main_templates2/danube.scala
changeset 486 9c03b5e89a2a
parent 485 19b75e899d37
child 487 efad9725dfd8
--- a/main_templates2/danube.scala	Fri Apr 26 17:29:30 2024 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,161 +0,0 @@
-// Main Part 2 about Movie Recommendations 
-// at Danube.co.uk
-//===========================================
-
-object M2 {
-
-import io.Source
-import scala.util._
-
-// (1) Implement the function get_csv_url which takes an url-string
-//     as argument and requests the corresponding file. The two urls
-//     of interest are ratings_url and movies_url, which correspond 
-//     to CSV-files.
-//
-//     The function should ReTurn the CSV-file appropriately broken
-//     up into lines, and the first line should be dropped (that is without
-//     the header of the CSV-file). The result is a list of strings (lines
-//     in the file).
-
-def get_csv_url(url: String) : List[String] = ???
-
-
-val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
-val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
-
-// testcases
-//-----------
-//:
-//val movies = get_csv_url(movies_url)
-
-//ratings.length  // 87313
-//movies.length   // 9742
-
-
-
-// (2) Implement two functions that process the CSV-files from (1). The ratings
-//     function filters out all ratings below 4 and ReTurns a list of 
-//     (userID, movieID) pairs. The movies function just ReTurns a list 
-//     of (movieID, title) pairs. Note the input to these functions, that is
-//     the argument lines, will be the output of the function get_csv_url.
-
-
-def process_ratings(lines: List[String]) : List[(String, String)] = ???
-
-def process_movies(lines: List[String]) : List[(String, String)] = ???
-
-
-// testcases
-//-----------
-//val good_ratings = process_ratings(ratings)
-//val movie_names = process_movies(movies)
-
-//good_ratings.length   //48580
-//movie_names.length    // 9742
-
-
-
-
-// (3) Implement a grouping function that calculates a Map
-//     containing the userIDs and all the corresponding recommendations 
-//     (list of movieIDs). This  should be implemented in a tail
-//     recursive fashion, using a Map m as accumulator. This Map m
-//     is set to Map() at the beginning of the calculation.
-
-def groupById(ratings: List[(String, String)], 
-              m: Map[String, List[String]]) : Map[String, List[String]] = ???
-
-
-// testcases
-//-----------
-//val ratings_map = groupById(good_ratings, Map())
-//val movies_map = movie_names.toMap
-
-//ratings_map.get("414").get.map(movies_map.get(_)) 
-//    => most prolific recommender with 1227 positive ratings
-
-//ratings_map.get("474").get.map(movies_map.get(_)) 
-//    => second-most prolific recommender with 787 positive ratings
-
-//ratings_map.get("214").get.map(movies_map.get(_)) 
-//    => least prolific recommender with only 1 positive rating
-
-
-
-// (4) Implement a function that takes a ratings map and a movie_name as argument.
-//     The function calculates all suggestions containing
-//     the movie in its recommendations. It ReTurns a list of all these
-//     recommendations (each of them is a list and needs to have the movie deleted, 
-//     otherwise it might happen we recommend the same movie).
-
-
-def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = ???
-
-
-// testcases
-//-----------
-// movie ID "912" -> Casablanca (1942)
-//          "858" -> Godfather
-//          "260" -> Star Wars: Episode IV - A New Hope (1977)
-
-//favourites(ratings_map, "912").length  // => 80
-
-// That means there are 80 users that recommend the movie with ID 912.
-// Of these 80  users, 55 gave a good rating to movie 858 and
-// 52 a good rating to movies 260, 318, 593.
-
-
-
-// (5) Implement a suggestions function which takes a rating
-//     map and a movie_name as arguments. It calculates all the recommended
-//     movies sorted according to the most frequently suggested movie(s) first.
-
-def suggestions(recs: Map[String, List[String]], 
-                mov_name: String) : List[String] = ???
-
-
-// testcases
-//-----------
-
-//suggestions(ratings_map, "912")
-//suggestions(ratings_map, "912").length  
-// => 4110 suggestions with List(858, 260, 318, 593, ...)
-//    being the most frequently suggested movies
-
-
-
-// (6) Implement a recommendations function which generates at most
-//     *two* of the most frequently suggested movies. It ReTurns the 
-//     actual movie names, not the movieIDs.
-
-
-def recommendations(recs: Map[String, List[String]],
-                    movs: Map[String, String],
-                    mov_name: String) : List[String] = ???
-
-
-
-// testcases
-//-----------
-// recommendations(ratings_map, movies_map, "912")
-//   => List(Godfather, Star Wars: Episode IV - A NewHope (1977))
-
-//recommendations(ratings_map, movies_map, "260")
-//   => List(Star Wars: Episode V - The Empire Strikes Back (1980), 
-//           Star Wars: Episode VI - Return of the Jedi (1983))
-
-// recommendations(ratings_map, movies_map, "2")
-//   => List(Lion King, Jurassic Park (1993))
-
-// recommendations(ratings_map, movies_map, "0")
-//   => Nil
-
-// recommendations(ratings_map, movies_map, "1")
-//   => List(Shawshank Redemption, Forrest Gump (1994))
-
-// recommendations(ratings_map, movies_map, "4")
-//   => Nil  (there are three ratings for this movie in ratings.csv but they are not positive)     
-
-
-
-}