main_templates2/danube.scala
changeset 486 9c03b5e89a2a
parent 485 19b75e899d37
child 487 efad9725dfd8
equal deleted inserted replaced
485:19b75e899d37 486:9c03b5e89a2a
     1 // Main Part 2 about Movie Recommendations 
       
     2 // at Danube.co.uk
       
     3 //===========================================
       
     4 
       
     5 object M2 {
       
     6 
       
     7 import io.Source
       
     8 import scala.util._
       
     9 
       
    10 // (1) Implement the function get_csv_url which takes an url-string
       
    11 //     as argument and requests the corresponding file. The two urls
       
    12 //     of interest are ratings_url and movies_url, which correspond 
       
    13 //     to CSV-files.
       
    14 //
       
    15 //     The function should ReTurn the CSV-file appropriately broken
       
    16 //     up into lines, and the first line should be dropped (that is without
       
    17 //     the header of the CSV-file). The result is a list of strings (lines
       
    18 //     in the file).
       
    19 
       
    20 def get_csv_url(url: String) : List[String] = ???
       
    21 
       
    22 
       
    23 val ratings_url = """https://nms.kcl.ac.uk/christian.urban/ratings.csv"""
       
    24 val movies_url = """https://nms.kcl.ac.uk/christian.urban/movies.csv"""
       
    25 
       
    26 // testcases
       
    27 //-----------
       
    28 //:
       
    29 //val movies = get_csv_url(movies_url)
       
    30 
       
    31 //ratings.length  // 87313
       
    32 //movies.length   // 9742
       
    33 
       
    34 
       
    35 
       
    36 // (2) Implement two functions that process the CSV-files from (1). The ratings
       
    37 //     function filters out all ratings below 4 and ReTurns a list of 
       
    38 //     (userID, movieID) pairs. The movies function just ReTurns a list 
       
    39 //     of (movieID, title) pairs. Note the input to these functions, that is
       
    40 //     the argument lines, will be the output of the function get_csv_url.
       
    41 
       
    42 
       
    43 def process_ratings(lines: List[String]) : List[(String, String)] = ???
       
    44 
       
    45 def process_movies(lines: List[String]) : List[(String, String)] = ???
       
    46 
       
    47 
       
    48 // testcases
       
    49 //-----------
       
    50 //val good_ratings = process_ratings(ratings)
       
    51 //val movie_names = process_movies(movies)
       
    52 
       
    53 //good_ratings.length   //48580
       
    54 //movie_names.length    // 9742
       
    55 
       
    56 
       
    57 
       
    58 
       
    59 // (3) Implement a grouping function that calculates a Map
       
    60 //     containing the userIDs and all the corresponding recommendations 
       
    61 //     (list of movieIDs). This  should be implemented in a tail
       
    62 //     recursive fashion, using a Map m as accumulator. This Map m
       
    63 //     is set to Map() at the beginning of the calculation.
       
    64 
       
    65 def groupById(ratings: List[(String, String)], 
       
    66               m: Map[String, List[String]]) : Map[String, List[String]] = ???
       
    67 
       
    68 
       
    69 // testcases
       
    70 //-----------
       
    71 //val ratings_map = groupById(good_ratings, Map())
       
    72 //val movies_map = movie_names.toMap
       
    73 
       
    74 //ratings_map.get("414").get.map(movies_map.get(_)) 
       
    75 //    => most prolific recommender with 1227 positive ratings
       
    76 
       
    77 //ratings_map.get("474").get.map(movies_map.get(_)) 
       
    78 //    => second-most prolific recommender with 787 positive ratings
       
    79 
       
    80 //ratings_map.get("214").get.map(movies_map.get(_)) 
       
    81 //    => least prolific recommender with only 1 positive rating
       
    82 
       
    83 
       
    84 
       
    85 // (4) Implement a function that takes a ratings map and a movie_name as argument.
       
    86 //     The function calculates all suggestions containing
       
    87 //     the movie in its recommendations. It ReTurns a list of all these
       
    88 //     recommendations (each of them is a list and needs to have the movie deleted, 
       
    89 //     otherwise it might happen we recommend the same movie).
       
    90 
       
    91 
       
    92 def favourites(m: Map[String, List[String]], mov: String) : List[List[String]] = ???
       
    93 
       
    94 
       
    95 // testcases
       
    96 //-----------
       
    97 // movie ID "912" -> Casablanca (1942)
       
    98 //          "858" -> Godfather
       
    99 //          "260" -> Star Wars: Episode IV - A New Hope (1977)
       
   100 
       
   101 //favourites(ratings_map, "912").length  // => 80
       
   102 
       
   103 // That means there are 80 users that recommend the movie with ID 912.
       
   104 // Of these 80  users, 55 gave a good rating to movie 858 and
       
   105 // 52 a good rating to movies 260, 318, 593.
       
   106 
       
   107 
       
   108 
       
   109 // (5) Implement a suggestions function which takes a rating
       
   110 //     map and a movie_name as arguments. It calculates all the recommended
       
   111 //     movies sorted according to the most frequently suggested movie(s) first.
       
   112 
       
   113 def suggestions(recs: Map[String, List[String]], 
       
   114                 mov_name: String) : List[String] = ???
       
   115 
       
   116 
       
   117 // testcases
       
   118 //-----------
       
   119 
       
   120 //suggestions(ratings_map, "912")
       
   121 //suggestions(ratings_map, "912").length  
       
   122 // => 4110 suggestions with List(858, 260, 318, 593, ...)
       
   123 //    being the most frequently suggested movies
       
   124 
       
   125 
       
   126 
       
   127 // (6) Implement a recommendations function which generates at most
       
   128 //     *two* of the most frequently suggested movies. It ReTurns the 
       
   129 //     actual movie names, not the movieIDs.
       
   130 
       
   131 
       
   132 def recommendations(recs: Map[String, List[String]],
       
   133                     movs: Map[String, String],
       
   134                     mov_name: String) : List[String] = ???
       
   135 
       
   136 
       
   137 
       
   138 // testcases
       
   139 //-----------
       
   140 // recommendations(ratings_map, movies_map, "912")
       
   141 //   => List(Godfather, Star Wars: Episode IV - A NewHope (1977))
       
   142 
       
   143 //recommendations(ratings_map, movies_map, "260")
       
   144 //   => List(Star Wars: Episode V - The Empire Strikes Back (1980), 
       
   145 //           Star Wars: Episode VI - Return of the Jedi (1983))
       
   146 
       
   147 // recommendations(ratings_map, movies_map, "2")
       
   148 //   => List(Lion King, Jurassic Park (1993))
       
   149 
       
   150 // recommendations(ratings_map, movies_map, "0")
       
   151 //   => Nil
       
   152 
       
   153 // recommendations(ratings_map, movies_map, "1")
       
   154 //   => List(Shawshank Redemption, Forrest Gump (1994))
       
   155 
       
   156 // recommendations(ratings_map, movies_map, "4")
       
   157 //   => Nil  (there are three ratings for this movie in ratings.csv but they are not positive)     
       
   158 
       
   159 
       
   160 
       
   161 }