--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/testing3-bak/knight1.scala Fri Nov 16 02:06:03 2018 +0000
@@ -0,0 +1,133 @@
+
+// Part 1 about finding and counting Knight's tours
+//==================================================
+
+object CW7a extends App{
+
+type Pos = (Int, Int) // a position on a chessboard
+type Path = List[Pos] // a path...a list of positions
+
+//(1a) Complete the function that tests whether the position
+// is inside the board and not yet element in the path.
+
+//def is_legal(dim: Int, path: Path)(x: Pos) : Boolean = ...
+
+def is_legal(dim: Int, path: Path)(x: Pos) : Boolean = {
+
+// if ((x._1<dim && x._2<dim) && (x._1>0 || x._2>0)) false else !path.contains(x)
+
+ if (x._1 < 0 || x._2 < 0) false
+ else if (x._1 < dim && x._2 < dim && !path.contains(x)) true
+ else false
+
+
+}
+
+
+
+def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = {
+
+ val allPossibleMoves = List((x._1+1, x._2+2), (x._1+2, x._2+1), (x._1+2, x._2-1), (x._1+1, x._2-2), (x._1-1, x._2-2), (x._1-2, x._2-1), (x._1-2, x._2+1), (x._1-1, x._2+2));
+
+ //val finalList = allPossibleMoves.filter((a=>a._1<dim && a._2<dim && x._1 >= 0 && a._2 >= 0));
+
+ val finalList = for(pos<-allPossibleMoves if(is_legal(dim,path)(pos))) yield pos;
+
+ // println("Space in board: " + dim*dim + " for dim: " + dim)
+
+
+ finalList.toList;
+
+
+}
+
+println(legal_moves(8, Nil, (2,2)))
+println(legal_moves(8, Nil, (7,7)))
+println(legal_moves(8, List((4,1), (1,0)), (2,2)))
+println(legal_moves(8, List((6,6)), (7,7)))
+println(legal_moves(1, Nil, (0,0)))
+println(legal_moves(2, Nil, (0,0)))
+println(legal_moves(3, Nil, (0,0)))
+
+println("=================================================================================")
+println("================================Comparision output===============================")
+println("=================================================================================")
+
+println(legal_moves(8, Nil, (2,2)) == List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
+println(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
+println(legal_moves(8, List((4,1), (1,0)), (2,2)) == List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
+println(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
+println(legal_moves(1, Nil, (0,0)) == Nil)
+println(legal_moves(2, Nil, (0,0)) == Nil)
+println(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1)))
+
+
+def count_tours(dim: Int, path: Path) : Int = {
+
+ val allMovesFromCurrentPosition = legal_moves(dim, path, path.head);
+
+ if (path.length == dim*dim) 1 else {
+
+ if (allMovesFromCurrentPosition.size == 0 ) 0 else {
+
+ allMovesFromCurrentPosition.map( element => count_tours(dim, element::path)).sum
+
+
+ }
+
+ }
+
+}
+
+
+
+println ( count_tours(5, List((0,0))) )
+
+def enum_tours(dim: Int, path: Path) : List[Path] = {
+
+ val allMovesFromCurrentPosition = legal_moves(dim, path, path.head);
+
+ if (path.length == dim*dim) List(path) else {
+
+ allMovesFromCurrentPosition.map( element => enum_tours(dim, element::path)).flatten ;
+
+
+ }
+ }
+ println ( enum_tours(6, List((0,2))).size)
+}
+
+
+
+
+
+
+
+//(1b) Complete the function that calculates for a position
+// all legal onward moves that are not already in the path.
+// The moves should be ordered in a "clockwise" manner.
+
+//def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = ...
+
+
+
+
+//some test cases
+//
+//assert(legal_moves(8, Nil, (2,2)) ==
+// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4)))
+//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6)))
+//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) ==
+// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4)))
+//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6)))
+
+
+//(1c) Complete the two recursive functions below.
+// They exhaustively search for knight's tours starting from the
+// given path. The first function counts all possible tours,
+// and the second collects all tours in a list of paths.
+
+//def count_tours(dim: Int, path: Path) : Int = ...
+
+
+//def enum_tours(dim: Int, path: Path) : List[Path] = ...