diff -r eb188f9ac038 -r 9b45dd24271b testing3-bak/knight1.scala --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/testing3-bak/knight1.scala Fri Nov 16 02:06:03 2018 +0000 @@ -0,0 +1,133 @@ + +// Part 1 about finding and counting Knight's tours +//================================================== + +object CW7a extends App{ + +type Pos = (Int, Int) // a position on a chessboard +type Path = List[Pos] // a path...a list of positions + +//(1a) Complete the function that tests whether the position +// is inside the board and not yet element in the path. + +//def is_legal(dim: Int, path: Path)(x: Pos) : Boolean = ... + +def is_legal(dim: Int, path: Path)(x: Pos) : Boolean = { + +// if ((x._10 || x._2>0)) false else !path.contains(x) + + if (x._1 < 0 || x._2 < 0) false + else if (x._1 < dim && x._2 < dim && !path.contains(x)) true + else false + + +} + + + +def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = { + + val allPossibleMoves = List((x._1+1, x._2+2), (x._1+2, x._2+1), (x._1+2, x._2-1), (x._1+1, x._2-2), (x._1-1, x._2-2), (x._1-2, x._2-1), (x._1-2, x._2+1), (x._1-1, x._2+2)); + + //val finalList = allPossibleMoves.filter((a=>a._1= 0 && a._2 >= 0)); + + val finalList = for(pos<-allPossibleMoves if(is_legal(dim,path)(pos))) yield pos; + + // println("Space in board: " + dim*dim + " for dim: " + dim) + + + finalList.toList; + + +} + +println(legal_moves(8, Nil, (2,2))) +println(legal_moves(8, Nil, (7,7))) +println(legal_moves(8, List((4,1), (1,0)), (2,2))) +println(legal_moves(8, List((6,6)), (7,7))) +println(legal_moves(1, Nil, (0,0))) +println(legal_moves(2, Nil, (0,0))) +println(legal_moves(3, Nil, (0,0))) + +println("=================================================================================") +println("================================Comparision output===============================") +println("=================================================================================") + +println(legal_moves(8, Nil, (2,2)) == List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))) +println(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6))) +println(legal_moves(8, List((4,1), (1,0)), (2,2)) == List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4))) +println(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6))) +println(legal_moves(1, Nil, (0,0)) == Nil) +println(legal_moves(2, Nil, (0,0)) == Nil) +println(legal_moves(3, Nil, (0,0)) == List((1,2), (2,1))) + + +def count_tours(dim: Int, path: Path) : Int = { + + val allMovesFromCurrentPosition = legal_moves(dim, path, path.head); + + if (path.length == dim*dim) 1 else { + + if (allMovesFromCurrentPosition.size == 0 ) 0 else { + + allMovesFromCurrentPosition.map( element => count_tours(dim, element::path)).sum + + + } + + } + +} + + + +println ( count_tours(5, List((0,0))) ) + +def enum_tours(dim: Int, path: Path) : List[Path] = { + + val allMovesFromCurrentPosition = legal_moves(dim, path, path.head); + + if (path.length == dim*dim) List(path) else { + + allMovesFromCurrentPosition.map( element => enum_tours(dim, element::path)).flatten ; + + + } + } + println ( enum_tours(6, List((0,2))).size) +} + + + + + + + +//(1b) Complete the function that calculates for a position +// all legal onward moves that are not already in the path. +// The moves should be ordered in a "clockwise" manner. + +//def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = ... + + + + +//some test cases +// +//assert(legal_moves(8, Nil, (2,2)) == +// List((3,4), (4,3), (4,1), (3,0), (1,0), (0,1), (0,3), (1,4))) +//assert(legal_moves(8, Nil, (7,7)) == List((6,5), (5,6))) +//assert(legal_moves(8, List((4,1), (1,0)), (2,2)) == +// List((3,4), (4,3), (3,0), (0,1), (0,3), (1,4))) +//assert(legal_moves(8, List((6,6)), (7,7)) == List((6,5), (5,6))) + + +//(1c) Complete the two recursive functions below. +// They exhaustively search for knight's tours starting from the +// given path. The first function counts all possible tours, +// and the second collects all tours in a list of paths. + +//def count_tours(dim: Int, path: Path) : Int = ... + + +//def enum_tours(dim: Int, path: Path) : List[Path] = ...