--- a/progs/knight3_sol.scala Tue Nov 15 23:08:09 2016 +0000
+++ b/progs/knight3_sol.scala Wed Nov 16 14:37:18 2016 +0000
@@ -1,65 +1,24 @@
-// Part 2 about finding a single tour for a board
-//================================================
-
-
-type Pos = (Int, Int)
-type Path = List[Pos]
+// Part 3 about finding a single tour using the Warnsdorf Rule
+//=============================================================
-def print_board(dim: Int, path: Path): Unit = {
- println
- for (i <- 0 until dim) {
- for (j <- 0 until dim) {
- print(f"${path.reverse.indexOf((i, j))}%3.0f ")
- }
- println
- }
-}
-
-def add_pair(x: Pos)(y: Pos): Pos =
- (x._1 + y._1, x._2 + y._2)
+// copy any function you need from files knight1.scala and
+// knight2.scala
-def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
- 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
-
-def moves(x: Pos): List[Pos] =
- List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
- (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x))
-
-def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
- moves(x).filter(is_legal(dim, path))
-
-def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] =
- legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length)
+type Pos = (Int, Int) // a position on a chessboard
+type Path = List[Pos] // a path...a list of positions
+//(3a) Complete the function that calculates a list of onward
+// moves like in (1b) but orders them according to the Warnsdorf’s
+// rule. That means moves with the fewest legal onward moves
+// should come first.
-def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
- case Nil => None
- case x::xs => {
- val result = f(x)
- if (result.isDefined) result else first(xs, f)
- }
-}
-
-
-def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = {
- if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path)
- else
- first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path))
-}
+def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = ..
-for (dim <- 1 to 7) {
- val t = first_closed_tour_heuristics(dim, List((dim / 2, dim / 2)))
- println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
-}
-
+//(3b) Complete the function that searches for a single *closed*
+// tour using the ordered moves function.
-def first_tour_heuristics(dim: Int, path: Path): Option[Path] = {
- if (path.length == dim * dim) Some(path)
- else
- first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path))
-}
+def first_closed_tour_heuristic(dim: Int, path: Path): Option[Path] = ...
-for (dim <- 1 to 50) {
- val t = first_tour_heuristics(dim, List((dim / 2, dim / 2)))
- println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
-}
+//(3c) Sama as (3b) but searches for *open* tours.
+
+def first_tour_heuristic(dim: Int, path: Path): Option[Path] = ...