diff -r fdc2c6fb7a24 -r 9891c9fac37e progs/knight3_sol.scala --- a/progs/knight3_sol.scala Tue Nov 15 23:08:09 2016 +0000 +++ b/progs/knight3_sol.scala Wed Nov 16 14:37:18 2016 +0000 @@ -1,65 +1,24 @@ -// Part 2 about finding a single tour for a board -//================================================ - - -type Pos = (Int, Int) -type Path = List[Pos] +// Part 3 about finding a single tour using the Warnsdorf Rule +//============================================================= -def print_board(dim: Int, path: Path): Unit = { - println - for (i <- 0 until dim) { - for (j <- 0 until dim) { - print(f"${path.reverse.indexOf((i, j))}%3.0f ") - } - println - } -} - -def add_pair(x: Pos)(y: Pos): Pos = - (x._1 + y._1, x._2 + y._2) +// copy any function you need from files knight1.scala and +// knight2.scala -def is_legal(dim: Int, path: Path)(x: Pos): Boolean = - 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) - -def moves(x: Pos): List[Pos] = - List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), - (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)) - -def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = - moves(x).filter(is_legal(dim, path)) - -def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = - legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length) +type Pos = (Int, Int) // a position on a chessboard +type Path = List[Pos] // a path...a list of positions +//(3a) Complete the function that calculates a list of onward +// moves like in (1b) but orders them according to the Warnsdorf’s +// rule. That means moves with the fewest legal onward moves +// should come first. -def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match { - case Nil => None - case x::xs => { - val result = f(x) - if (result.isDefined) result else first(xs, f) - } -} - - -def first_closed_tour_heuristics(dim: Int, path: Path): Option[Path] = { - if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path) - else - first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristics(dim, x::path)) -} +def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = .. -for (dim <- 1 to 7) { - val t = first_closed_tour_heuristics(dim, List((dim / 2, dim / 2))) - println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) -} - +//(3b) Complete the function that searches for a single *closed* +// tour using the ordered moves function. -def first_tour_heuristics(dim: Int, path: Path): Option[Path] = { - if (path.length == dim * dim) Some(path) - else - first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristics(dim, x::path)) -} +def first_closed_tour_heuristic(dim: Int, path: Path): Option[Path] = ... -for (dim <- 1 to 50) { - val t = first_tour_heuristics(dim, List((dim / 2, dim / 2))) - println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) -} +//(3c) Sama as (3b) but searches for *open* tours. + +def first_tour_heuristic(dim: Int, path: Path): Option[Path] = ...