--- a/testing2/knight3.scala Wed Nov 29 21:22:29 2017 +0000
+++ b/testing2/knight3.scala Sun Dec 03 21:11:49 2017 +0000
@@ -1,45 +1,96 @@
-import scala.annotation.tailrec
+// Part 3 about finding a single tour using the Warnsdorf Rule
+//=============================================================
+
object CW7c {
-type Pos = (Int, Int) // a position on a chessboard
-type Path = List[Pos] // a path...a list of positions
+
+type Pos = (Int, Int)
+type Path = List[Pos]
-def is_legal(dim: Int, path: Path)(x: Pos) : Boolean = {
- if((x._1 >= 0) && (x._2 >= 0) && (x._1 < dim) && (x._2 < dim)){
- !(path.contains(x))
- } else false
- }
-
-def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = {
- val lst = List( (1,2),(2,1),(2,-1),(1,-2), (-1,-2),(-2,-1),(-2,1),(-1,2) )
- val mapping = lst.map(s => ( s._1 + x._1, s._2 + x._2) )
- for( i <- mapping if ( is_legal(dim,path)(i) )) yield i
- }
-
-def ordered_moves(dim: Int, path: Path, x: Pos) : List[Pos] = {
-legal_moves(dim,path,x).sortBy(legal_moves(dim,path,_).length )
+def print_board(dim: Int, path: Path): Unit = {
+ println
+ for (i <- 0 until dim) {
+ for (j <- 0 until dim) {
+ print(f"${path.reverse.indexOf((i, j))}%3.0f ")
+ }
+ println
+ }
}
-def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] ={
- if(xs.isEmpty)
- None
- else {
- val b = f(xs.head)
- if (b!=None)
- b
- else
- first(xs.tail,f)
- }
+def add_pair(x: Pos)(y: Pos): Pos =
+ (x._1 + y._1, x._2 + y._2)
+
+def is_legal(dim: Int, path: Path)(x: Pos): Boolean =
+ 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x)
+
+def moves(x: Pos): List[Pos] =
+ List(( 1, 2),( 2, 1),( 2, -1),( 1, -2),
+ (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x))
+
+def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] =
+ moves(x).filter(is_legal(dim, path))
+
+def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] =
+ legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length)
+
+
+import scala.annotation.tailrec
+
+@tailrec
+def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match {
+ case Nil => None
+ case x::xs => {
+ val result = f(x)
+ if (result.isDefined) result else first(xs, f)
}
-
-def first_closed_tour_heuristic(dim: Int, path: Path) : Option[Path] = {
- if (dim < 5) None
- else
- if(path.length==dim*dim) Some(path)
- else
- first(ordered_moves(dim,path,path.head),y => first_closed_tour_heuristic(dim, y::path))
- }
-
}
-first_closed_tour_heuristic(6, List((3, 3)))
+def first_closed_tour_heuristic(dim: Int, path: Path): Option[Path] = {
+ if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path)
+ else
+ first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristic(dim, x::path))
+}
+
+/*
+for (dim <- 1 to 6) {
+ val t = first_closed_tour_heuristic(dim, List((dim / 2, dim / 2)))
+ println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
+}*/
+
+
+def first_tour_heuristic(dim: Int, path: Path): Option[Path] = {
+
+ @tailrec
+ def aux(dim: Int, path: Path, moves: List[Pos]): Option[Path] =
+ if (path.length == dim * dim) Some(path)
+ else
+ moves match {
+ case Nil => None
+ case x::xs => {
+ val r = first_tour_heuristic(dim, x::path)
+ if (r.isDefined) r else aux(dim, path, xs)
+ }
+ }
+
+ aux(dim, path, ordered_moves(dim, path, path.head))
+}
+
+/*
+def first_tour_heuristic(dim: Int, path: Path): Option[Path] = {
+ if (path.length == dim * dim) Some(path)
+ else
+ first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristic(dim, x::path))
+}
+*/
+
+/*
+for (dim <- 1 to 50) {
+ val t = first_tour_heuristic(dim, List((dim / 2, dim / 2)))
+ println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" }))
+}
+*/
+
+}
+
+
+//CW7c.first_tour_heuristic(50, List((0,0))).get