diff -r 863feeb5c760 -r 6ea450e999e2 testing2/knight3.scala --- a/testing2/knight3.scala Wed Nov 29 21:22:29 2017 +0000 +++ b/testing2/knight3.scala Sun Dec 03 21:11:49 2017 +0000 @@ -1,45 +1,96 @@ -import scala.annotation.tailrec +// Part 3 about finding a single tour using the Warnsdorf Rule +//============================================================= + object CW7c { -type Pos = (Int, Int) // a position on a chessboard -type Path = List[Pos] // a path...a list of positions + +type Pos = (Int, Int) +type Path = List[Pos] -def is_legal(dim: Int, path: Path)(x: Pos) : Boolean = { - if((x._1 >= 0) && (x._2 >= 0) && (x._1 < dim) && (x._2 < dim)){ - !(path.contains(x)) - } else false - } - -def legal_moves(dim: Int, path: Path, x: Pos) : List[Pos] = { - val lst = List( (1,2),(2,1),(2,-1),(1,-2), (-1,-2),(-2,-1),(-2,1),(-1,2) ) - val mapping = lst.map(s => ( s._1 + x._1, s._2 + x._2) ) - for( i <- mapping if ( is_legal(dim,path)(i) )) yield i - } - -def ordered_moves(dim: Int, path: Path, x: Pos) : List[Pos] = { -legal_moves(dim,path,x).sortBy(legal_moves(dim,path,_).length ) +def print_board(dim: Int, path: Path): Unit = { + println + for (i <- 0 until dim) { + for (j <- 0 until dim) { + print(f"${path.reverse.indexOf((i, j))}%3.0f ") + } + println + } } -def first(xs: List[Pos], f: Pos => Option[Path]) : Option[Path] ={ - if(xs.isEmpty) - None - else { - val b = f(xs.head) - if (b!=None) - b - else - first(xs.tail,f) - } +def add_pair(x: Pos)(y: Pos): Pos = + (x._1 + y._1, x._2 + y._2) + +def is_legal(dim: Int, path: Path)(x: Pos): Boolean = + 0 <= x._1 && 0 <= x._2 && x._1 < dim && x._2 < dim && !path.contains(x) + +def moves(x: Pos): List[Pos] = + List(( 1, 2),( 2, 1),( 2, -1),( 1, -2), + (-1, -2),(-2, -1),(-2, 1),(-1, 2)).map(add_pair(x)) + +def legal_moves(dim: Int, path: Path, x: Pos): List[Pos] = + moves(x).filter(is_legal(dim, path)) + +def ordered_moves(dim: Int, path: Path, x: Pos): List[Pos] = + legal_moves(dim, path, x).sortBy((x) => legal_moves(dim, path, x).length) + + +import scala.annotation.tailrec + +@tailrec +def first(xs: List[Pos], f: Pos => Option[Path]): Option[Path] = xs match { + case Nil => None + case x::xs => { + val result = f(x) + if (result.isDefined) result else first(xs, f) } - -def first_closed_tour_heuristic(dim: Int, path: Path) : Option[Path] = { - if (dim < 5) None - else - if(path.length==dim*dim) Some(path) - else - first(ordered_moves(dim,path,path.head),y => first_closed_tour_heuristic(dim, y::path)) - } - } -first_closed_tour_heuristic(6, List((3, 3))) +def first_closed_tour_heuristic(dim: Int, path: Path): Option[Path] = { + if (path.length == dim * dim && moves(path.head).contains(path.last)) Some(path) + else + first(ordered_moves(dim, path, path.head), (x: Pos) => first_closed_tour_heuristic(dim, x::path)) +} + +/* +for (dim <- 1 to 6) { + val t = first_closed_tour_heuristic(dim, List((dim / 2, dim / 2))) + println(s"${dim} x ${dim} closed: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) +}*/ + + +def first_tour_heuristic(dim: Int, path: Path): Option[Path] = { + + @tailrec + def aux(dim: Int, path: Path, moves: List[Pos]): Option[Path] = + if (path.length == dim * dim) Some(path) + else + moves match { + case Nil => None + case x::xs => { + val r = first_tour_heuristic(dim, x::path) + if (r.isDefined) r else aux(dim, path, xs) + } + } + + aux(dim, path, ordered_moves(dim, path, path.head)) +} + +/* +def first_tour_heuristic(dim: Int, path: Path): Option[Path] = { + if (path.length == dim * dim) Some(path) + else + first(ordered_moves(dim, path, path.head), (x: Pos) => first_tour_heuristic(dim, x::path)) +} +*/ + +/* +for (dim <- 1 to 50) { + val t = first_tour_heuristic(dim, List((dim / 2, dim / 2))) + println(s"${dim} x ${dim}: " + (if (t == None) "" else { print_board(dim, t.get) ; "" })) +} +*/ + +} + + +//CW7c.first_tour_heuristic(50, List((0,0))).get