--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/main_testing3/re.scala Mon Nov 02 02:31:44 2020 +0000
@@ -0,0 +1,176 @@
+// Core Part about Regular Expression Matching
+//=============================================
+
+object CW8c {
+
+// Regular Expressions
+abstract class Rexp
+case object ZERO extends Rexp
+case object ONE extends Rexp
+case class CHAR(c: Char) extends Rexp
+case class ALT(r1: Rexp, r2: Rexp) extends Rexp
+case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
+case class STAR(r: Rexp) extends Rexp
+
+// some convenience for typing in regular expressions
+
+import scala.language.implicitConversions
+import scala.language.reflectiveCalls
+
+
+def charlist2rexp(s: List[Char]): Rexp = s match {
+ case Nil => ONE
+ case c::Nil => CHAR(c)
+ case c::s => SEQ(CHAR(c), charlist2rexp(s))
+}
+implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)
+
+implicit def RexpOps (r: Rexp) = new {
+ def | (s: Rexp) = ALT(r, s)
+ def % = STAR(r)
+ def ~ (s: Rexp) = SEQ(r, s)
+}
+
+implicit def stringOps (s: String) = new {
+ def | (r: Rexp) = ALT(s, r)
+ def | (r: String) = ALT(s, r)
+ def % = STAR(s)
+ def ~ (r: Rexp) = SEQ(s, r)
+ def ~ (r: String) = SEQ(s, r)
+}
+
+// (1) Complete the function nullable according to
+// the definition given in the coursework; this
+// function checks whether a regular expression
+// can match the empty string and Returns a boolean
+// accordingly.
+
+def nullable (r: Rexp) : Boolean = r match {
+ case ZERO => false
+ case ONE => true
+ case CHAR(_) => false
+ case ALT(r1, r2) => nullable(r1) || nullable(r2)
+ case SEQ(r1, r2) => nullable(r1) && nullable(r2)
+ case STAR(_) => true
+}
+
+// (2) Complete the function der according to
+// the definition given in the coursework; this
+// function calculates the derivative of a
+// regular expression w.r.t. a character.
+
+def der (c: Char, r: Rexp) : Rexp = r match {
+ case ZERO => ZERO
+ case ONE => ZERO
+ case CHAR(d) => if (c == d) ONE else ZERO
+ case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
+ case SEQ(r1, r2) =>
+ if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
+ else SEQ(der(c, r1), r2)
+ case STAR(r1) => SEQ(der(c, r1), STAR(r1))
+}
+
+// (3) Complete the simp function according to
+// the specification given in the coursework; this
+// function simplifies a regular expression from
+// the inside out, like you would simplify arithmetic
+// expressions; however it does not simplify inside
+// STAR-regular expressions.
+
+def simp(r: Rexp) : Rexp = r match {
+ case ALT(r1, r2) => (simp(r1), simp(r2)) match {
+ case (ZERO, r2s) => r2s
+ case (r1s, ZERO) => r1s
+ case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s)
+ }
+ case SEQ(r1, r2) => (simp(r1), simp(r2)) match {
+ case (ZERO, _) => ZERO
+ case (_, ZERO) => ZERO
+ case (ONE, r2s) => r2s
+ case (r1s, ONE) => r1s
+ case (r1s, r2s) => SEQ(r1s, r2s)
+ }
+ case r => r
+}
+
+
+// (4) Complete the two functions below; the first
+// calculates the derivative w.r.t. a string; the second
+// is the regular expression matcher taking a regular
+// expression and a string and checks whether the
+// string matches the regular expression.
+
+def ders (s: List[Char], r: Rexp) : Rexp = s match {
+ case Nil => r
+ case c::s => ders(s, simp(der(c, r)))
+}
+
+// main matcher function
+def matcher(r: Rexp, s: String) = nullable(ders(s.toList, r))
+
+// (5) Complete the size function for regular
+// expressions according to the specification
+// given in the coursework.
+
+
+def size(r: Rexp): Int = r match {
+ case ZERO => 1
+ case ONE => 1
+ case CHAR(_) => 1
+ case ALT(r1, r2) => 1 + size(r1) + size (r2)
+ case SEQ(r1, r2) => 1 + size(r1) + size (r2)
+ case STAR(r1) => 1 + size(r1)
+}
+
+
+
+// some testing data
+
+//matcher(("a" ~ "b") ~ "c", "abc") // => true
+//matcher(("a" ~ "b") ~ "c", "ab") // => false
+
+// the supposedly 'evil' regular expression (a*)* b
+val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
+
+//matcher(EVIL, "a" * 1000 ++ "b") // => true
+//matcher(EVIL, "a" * 1000) // => false
+
+// size without simplifications
+//size(der('a', der('a', EVIL))) // => 28
+//size(der('a', der('a', der('a', EVIL)))) // => 58
+
+// size with simplification
+//size(simp(der('a', der('a', EVIL)))) // => 8
+//size(simp(der('a', der('a', der('a', EVIL))))) // => 8
+
+// Python needs around 30 seconds for matching 28 a's with EVIL.
+// Java 9 and later increase this to an "astonishing" 40000 a's in
+// around 30 seconds.
+//
+// Lets see how long it takes to match strings with
+// 5 Million a's...it should be in the range of a
+// couple of seconds.
+
+def time_needed[T](i: Int, code: => T) = {
+ val start = System.nanoTime()
+ for (j <- 1 to i) code
+ val end = System.nanoTime()
+ (end - start)/(i * 1.0e9)
+}
+
+//for (i <- 0 to 5000000 by 500000) {
+// println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i))) + " secs.")
+//}
+
+// another "power" test case
+//simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(100).next) == ONE
+
+// the Iterator produces the rexp
+//
+// SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE)
+//
+// where SEQ is nested 100 times.
+
+
+
+}