main_testing3/re.scala
changeset 347 4de31fdc0d67
parent 329 8a34b2ebc8cc
child 403 ffce7b61b446
equal deleted inserted replaced
346:663c2a9108d1 347:4de31fdc0d67
       
     1 // Core Part about Regular Expression Matching
       
     2 //=============================================
       
     3 
       
     4 object CW8c {
       
     5 
       
     6 // Regular Expressions
       
     7 abstract class Rexp
       
     8 case object ZERO extends Rexp
       
     9 case object ONE extends Rexp
       
    10 case class CHAR(c: Char) extends Rexp
       
    11 case class ALT(r1: Rexp, r2: Rexp) extends Rexp 
       
    12 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp 
       
    13 case class STAR(r: Rexp) extends Rexp 
       
    14 
       
    15 // some convenience for typing in regular expressions
       
    16 
       
    17 import scala.language.implicitConversions    
       
    18 import scala.language.reflectiveCalls 
       
    19 
       
    20 
       
    21 def charlist2rexp(s: List[Char]): Rexp = s match {
       
    22   case Nil => ONE
       
    23   case c::Nil => CHAR(c)
       
    24   case c::s => SEQ(CHAR(c), charlist2rexp(s))
       
    25 }
       
    26 implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)
       
    27 
       
    28 implicit def RexpOps (r: Rexp) = new {
       
    29   def | (s: Rexp) = ALT(r, s)
       
    30   def % = STAR(r)
       
    31   def ~ (s: Rexp) = SEQ(r, s)
       
    32 }
       
    33 
       
    34 implicit def stringOps (s: String) = new {
       
    35   def | (r: Rexp) = ALT(s, r)
       
    36   def | (r: String) = ALT(s, r)
       
    37   def % = STAR(s)
       
    38   def ~ (r: Rexp) = SEQ(s, r)
       
    39   def ~ (r: String) = SEQ(s, r)
       
    40 }
       
    41 
       
    42 // (1) Complete the function nullable according to
       
    43 // the definition given in the coursework; this 
       
    44 // function checks whether a regular expression
       
    45 // can match the empty string and Returns a boolean
       
    46 // accordingly.
       
    47 
       
    48 def nullable (r: Rexp) : Boolean = r match {
       
    49   case ZERO => false
       
    50   case ONE => true
       
    51   case CHAR(_) => false
       
    52   case ALT(r1, r2) => nullable(r1) || nullable(r2)
       
    53   case SEQ(r1, r2) => nullable(r1) && nullable(r2)
       
    54   case STAR(_) => true
       
    55 }
       
    56 
       
    57 // (2) Complete the function der according to
       
    58 // the definition given in the coursework; this
       
    59 // function calculates the derivative of a 
       
    60 // regular expression w.r.t. a character.
       
    61 
       
    62 def der (c: Char, r: Rexp) : Rexp = r match {
       
    63   case ZERO => ZERO
       
    64   case ONE => ZERO
       
    65   case CHAR(d) => if (c == d) ONE else ZERO
       
    66   case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
       
    67   case SEQ(r1, r2) => 
       
    68     if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
       
    69     else SEQ(der(c, r1), r2)
       
    70   case STAR(r1) => SEQ(der(c, r1), STAR(r1))
       
    71 }
       
    72 
       
    73 // (3) Complete the simp function according to
       
    74 // the specification given in the coursework; this
       
    75 // function simplifies a regular expression from
       
    76 // the inside out, like you would simplify arithmetic 
       
    77 // expressions; however it does not simplify inside 
       
    78 // STAR-regular expressions.
       
    79 
       
    80 def simp(r: Rexp) : Rexp = r match {
       
    81   case ALT(r1, r2) => (simp(r1), simp(r2)) match {
       
    82     case (ZERO, r2s) => r2s
       
    83     case (r1s, ZERO) => r1s
       
    84     case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s)
       
    85   }
       
    86   case SEQ(r1, r2) =>  (simp(r1), simp(r2)) match {
       
    87     case (ZERO, _) => ZERO
       
    88     case (_, ZERO) => ZERO
       
    89     case (ONE, r2s) => r2s
       
    90     case (r1s, ONE) => r1s
       
    91     case (r1s, r2s) => SEQ(r1s, r2s)
       
    92   }
       
    93   case r => r
       
    94 }
       
    95 
       
    96 
       
    97 // (4) Complete the two functions below; the first 
       
    98 // calculates the derivative w.r.t. a string; the second
       
    99 // is the regular expression matcher taking a regular
       
   100 // expression and a string and checks whether the
       
   101 // string matches the regular expression.
       
   102 
       
   103 def ders (s: List[Char], r: Rexp) : Rexp = s match {
       
   104   case Nil => r
       
   105   case c::s => ders(s, simp(der(c, r)))
       
   106 }
       
   107 
       
   108 // main matcher function
       
   109 def matcher(r: Rexp, s: String) = nullable(ders(s.toList, r))
       
   110 
       
   111 // (5) Complete the size function for regular
       
   112 // expressions according to the specification 
       
   113 // given in the coursework.
       
   114 
       
   115 
       
   116 def size(r: Rexp): Int = r match {
       
   117   case ZERO => 1
       
   118   case ONE => 1
       
   119   case CHAR(_) => 1
       
   120   case ALT(r1, r2) => 1 + size(r1) + size (r2)
       
   121   case SEQ(r1, r2) => 1 + size(r1) + size (r2)
       
   122   case STAR(r1) => 1 + size(r1)
       
   123 }
       
   124 
       
   125 
       
   126 
       
   127 // some testing data
       
   128 
       
   129 //matcher(("a" ~ "b") ~ "c", "abc")  // => true
       
   130 //matcher(("a" ~ "b") ~ "c", "ab")   // => false
       
   131 
       
   132 // the supposedly 'evil' regular expression (a*)* b
       
   133 val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
       
   134 
       
   135 //matcher(EVIL, "a" * 1000 ++ "b")   // => true
       
   136 //matcher(EVIL, "a" * 1000)          // => false
       
   137 
       
   138 // size without simplifications
       
   139 //size(der('a', der('a', EVIL)))             // => 28
       
   140 //size(der('a', der('a', der('a', EVIL))))   // => 58
       
   141 
       
   142 // size with simplification
       
   143 //size(simp(der('a', der('a', EVIL))))           // => 8
       
   144 //size(simp(der('a', der('a', der('a', EVIL))))) // => 8
       
   145 
       
   146 // Python needs around 30 seconds for matching 28 a's with EVIL. 
       
   147 // Java 9 and later increase this to an "astonishing" 40000 a's in
       
   148 // around 30 seconds.
       
   149 //
       
   150 // Lets see how long it takes to match strings with 
       
   151 // 5 Million a's...it should be in the range of a 
       
   152 // couple of seconds.
       
   153 
       
   154 def time_needed[T](i: Int, code: => T) = {
       
   155   val start = System.nanoTime()
       
   156   for (j <- 1 to i) code
       
   157   val end = System.nanoTime()
       
   158   (end - start)/(i * 1.0e9)
       
   159 }
       
   160 
       
   161 //for (i <- 0 to 5000000 by 500000) {
       
   162 //  println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i))) + " secs.") 
       
   163 //}
       
   164 
       
   165 // another "power" test case 
       
   166 //simp(Iterator.iterate(ONE:Rexp)(r => SEQ(r, ONE | ONE)).drop(100).next) == ONE
       
   167 
       
   168 // the Iterator produces the rexp
       
   169 //
       
   170 //      SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE)
       
   171 //
       
   172 //    where SEQ is nested 100 times.
       
   173  
       
   174 
       
   175 
       
   176 }