marking4/re.scala
changeset 227 b5f3e814a710
parent 168 03530cb87cd0
child 245 975d34506e88
equal deleted inserted replaced
226:5e489c9fe47b 227:b5f3e814a710
       
     1 // Part 1 about Regular Expression Matching
       
     2 //==========================================
       
     3 
       
     4 object CW8a {
       
     5 
       
     6 abstract class Rexp
       
     7 case object ZERO extends Rexp
       
     8 case object ONE extends Rexp
       
     9 case class CHAR(c: Char) extends Rexp
       
    10 case class ALT(r1: Rexp, r2: Rexp) extends Rexp 
       
    11 case class SEQ(r1: Rexp, r2: Rexp) extends Rexp 
       
    12 case class STAR(r: Rexp) extends Rexp 
       
    13 
       
    14 // some convenience for typing in regular expressions
       
    15 
       
    16 import scala.language.implicitConversions    
       
    17 import scala.language.reflectiveCalls 
       
    18 
       
    19 
       
    20 def charlist2rexp(s: List[Char]): Rexp = s match {
       
    21   case Nil => ONE
       
    22   case c::Nil => CHAR(c)
       
    23   case c::s => SEQ(CHAR(c), charlist2rexp(s))
       
    24 }
       
    25 implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)
       
    26 
       
    27 implicit def RexpOps (r: Rexp) = new {
       
    28   def | (s: Rexp) = ALT(r, s)
       
    29   def % = STAR(r)
       
    30   def ~ (s: Rexp) = SEQ(r, s)
       
    31 }
       
    32 
       
    33 implicit def stringOps (s: String) = new {
       
    34   def | (r: Rexp) = ALT(s, r)
       
    35   def | (r: String) = ALT(s, r)
       
    36   def % = STAR(s)
       
    37   def ~ (r: Rexp) = SEQ(s, r)
       
    38   def ~ (r: String) = SEQ(s, r)
       
    39 }
       
    40 
       
    41 // (1a) Complete the function nullable according to
       
    42 // the definition given in the coursework; this 
       
    43 // function checks whether a regular expression
       
    44 // can match the empty string
       
    45 
       
    46 def nullable (r: Rexp) : Boolean = r match {
       
    47   case ZERO => false
       
    48   case ONE => true
       
    49   case CHAR(_) => false
       
    50   case ALT(r1, r2) => nullable(r1) || nullable(r2)
       
    51   case SEQ(r1, r2) => nullable(r1) && nullable(r2)
       
    52   case STAR(_) => true
       
    53 }
       
    54 
       
    55 // (1b) Complete the function der according to
       
    56 // the definition given in the coursework; this
       
    57 // function calculates the derivative of a 
       
    58 // regular expression w.r.t. a character
       
    59 
       
    60 def der (c: Char, r: Rexp) : Rexp = r match {
       
    61   case ZERO => ZERO
       
    62   case ONE => ZERO
       
    63   case CHAR(d) => if (c == d) ONE else ZERO
       
    64   case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
       
    65   case SEQ(r1, r2) => 
       
    66     if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
       
    67     else SEQ(der(c, r1), r2)
       
    68   case STAR(r1) => SEQ(der(c, r1), STAR(r1))
       
    69 }
       
    70 
       
    71 // (1c) Complete the function der according to
       
    72 // the specification given in the coursework; this
       
    73 // function simplifies a regular expression;
       
    74 // however it does not simplify inside STAR-regular
       
    75 // expressions
       
    76 
       
    77 def simp(r: Rexp) : Rexp = r match {
       
    78   case ALT(r1, r2) => (simp(r1), simp(r2)) match {
       
    79     case (ZERO, r2s) => r2s
       
    80     case (r1s, ZERO) => r1s
       
    81     case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s)
       
    82   }
       
    83   case SEQ(r1, r2) =>  (simp(r1), simp(r2)) match {
       
    84     case (ZERO, _) => ZERO
       
    85     case (_, ZERO) => ZERO
       
    86     case (ONE, r2s) => r2s
       
    87     case (r1s, ONE) => r1s
       
    88     case (r1s, r2s) => SEQ(r1s, r2s)
       
    89   }
       
    90   case r => r
       
    91 }
       
    92 
       
    93 // (1d) Complete the two functions below; the first 
       
    94 // calculates the derivative w.r.t. a string; the second
       
    95 // is the regular expression matcher taking a regular
       
    96 // expression and a string and checks whether the
       
    97 // string matches the regular expression
       
    98 
       
    99 def ders (s: List[Char], r: Rexp) : Rexp = s match {
       
   100   case Nil => r
       
   101   case c::s => ders(s, simp(der(c, r)))
       
   102 }
       
   103 
       
   104 // main matcher function
       
   105 def matcher(r: Rexp, s: String): Boolean = nullable(ders(s.toList, r))
       
   106 
       
   107 // (1e) Complete the size function for regular
       
   108 // expressions  according to the specification 
       
   109 // given in the coursework.
       
   110 
       
   111 def size(r: Rexp): Int = r match {
       
   112   case ZERO => 1
       
   113   case ONE => 1
       
   114   case CHAR(_) => 1
       
   115   case ALT(r1, r2) => 1 + size(r1) + size (r2)
       
   116   case SEQ(r1, r2) => 1 + size(r1) + size (r2)
       
   117   case STAR(r1) => 1 + size(r1)
       
   118 }
       
   119 
       
   120 
       
   121 
       
   122 // some testing data
       
   123 /*
       
   124 matcher(("a" ~ "b") ~ "c", "abc")  // => true
       
   125 matcher(("a" ~ "b") ~ "c", "ab")   // => false
       
   126 
       
   127 // the supposedly 'evil' regular expression (a*)* b
       
   128 val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
       
   129 
       
   130 matcher(EVIL, "a" * 1000 ++ "b")   // => true
       
   131 matcher(EVIL, "a" * 1000)          // => false
       
   132 
       
   133 // size without simplifications
       
   134 size(der('a', der('a', EVIL)))             // => 28
       
   135 size(der('a', der('a', der('a', EVIL))))   // => 58
       
   136 
       
   137 // size with simplification
       
   138 size(simp(der('a', der('a', EVIL))))           // => 8
       
   139 size(simp(der('a', der('a', der('a', EVIL))))) // => 8
       
   140 
       
   141 // Java needs around 30 seconds for matching 28 a's with EVIL. 
       
   142 //
       
   143 // Lets see how long it takes to match strings with 
       
   144 // 0.5 Million a's...it should be in the range of some
       
   145 // seconds.
       
   146 
       
   147 def time_needed[T](i: Int, code: => T) = {
       
   148   val start = System.nanoTime()
       
   149   for (j <- 1 to i) code
       
   150   val end = System.nanoTime()
       
   151   (end - start)/(i * 1.0e9)
       
   152 }
       
   153 
       
   154 for (i <- 0 to 5000000 by 500000) {
       
   155   println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i))))
       
   156 }
       
   157 */
       
   158 
       
   159 }