marking4/re.scala
changeset 227 b5f3e814a710
parent 168 03530cb87cd0
child 245 975d34506e88
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/marking4/re.scala	Fri Nov 30 14:13:11 2018 +0000
@@ -0,0 +1,159 @@
+// Part 1 about Regular Expression Matching
+//==========================================
+
+object CW8a {
+
+abstract class Rexp
+case object ZERO extends Rexp
+case object ONE extends Rexp
+case class CHAR(c: Char) extends Rexp
+case class ALT(r1: Rexp, r2: Rexp) extends Rexp 
+case class SEQ(r1: Rexp, r2: Rexp) extends Rexp 
+case class STAR(r: Rexp) extends Rexp 
+
+// some convenience for typing in regular expressions
+
+import scala.language.implicitConversions    
+import scala.language.reflectiveCalls 
+
+
+def charlist2rexp(s: List[Char]): Rexp = s match {
+  case Nil => ONE
+  case c::Nil => CHAR(c)
+  case c::s => SEQ(CHAR(c), charlist2rexp(s))
+}
+implicit def string2rexp(s: String): Rexp = charlist2rexp(s.toList)
+
+implicit def RexpOps (r: Rexp) = new {
+  def | (s: Rexp) = ALT(r, s)
+  def % = STAR(r)
+  def ~ (s: Rexp) = SEQ(r, s)
+}
+
+implicit def stringOps (s: String) = new {
+  def | (r: Rexp) = ALT(s, r)
+  def | (r: String) = ALT(s, r)
+  def % = STAR(s)
+  def ~ (r: Rexp) = SEQ(s, r)
+  def ~ (r: String) = SEQ(s, r)
+}
+
+// (1a) Complete the function nullable according to
+// the definition given in the coursework; this 
+// function checks whether a regular expression
+// can match the empty string
+
+def nullable (r: Rexp) : Boolean = r match {
+  case ZERO => false
+  case ONE => true
+  case CHAR(_) => false
+  case ALT(r1, r2) => nullable(r1) || nullable(r2)
+  case SEQ(r1, r2) => nullable(r1) && nullable(r2)
+  case STAR(_) => true
+}
+
+// (1b) Complete the function der according to
+// the definition given in the coursework; this
+// function calculates the derivative of a 
+// regular expression w.r.t. a character
+
+def der (c: Char, r: Rexp) : Rexp = r match {
+  case ZERO => ZERO
+  case ONE => ZERO
+  case CHAR(d) => if (c == d) ONE else ZERO
+  case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
+  case SEQ(r1, r2) => 
+    if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
+    else SEQ(der(c, r1), r2)
+  case STAR(r1) => SEQ(der(c, r1), STAR(r1))
+}
+
+// (1c) Complete the function der according to
+// the specification given in the coursework; this
+// function simplifies a regular expression;
+// however it does not simplify inside STAR-regular
+// expressions
+
+def simp(r: Rexp) : Rexp = r match {
+  case ALT(r1, r2) => (simp(r1), simp(r2)) match {
+    case (ZERO, r2s) => r2s
+    case (r1s, ZERO) => r1s
+    case (r1s, r2s) => if (r1s == r2s) r1s else ALT (r1s, r2s)
+  }
+  case SEQ(r1, r2) =>  (simp(r1), simp(r2)) match {
+    case (ZERO, _) => ZERO
+    case (_, ZERO) => ZERO
+    case (ONE, r2s) => r2s
+    case (r1s, ONE) => r1s
+    case (r1s, r2s) => SEQ(r1s, r2s)
+  }
+  case r => r
+}
+
+// (1d) Complete the two functions below; the first 
+// calculates the derivative w.r.t. a string; the second
+// is the regular expression matcher taking a regular
+// expression and a string and checks whether the
+// string matches the regular expression
+
+def ders (s: List[Char], r: Rexp) : Rexp = s match {
+  case Nil => r
+  case c::s => ders(s, simp(der(c, r)))
+}
+
+// main matcher function
+def matcher(r: Rexp, s: String): Boolean = nullable(ders(s.toList, r))
+
+// (1e) Complete the size function for regular
+// expressions  according to the specification 
+// given in the coursework.
+
+def size(r: Rexp): Int = r match {
+  case ZERO => 1
+  case ONE => 1
+  case CHAR(_) => 1
+  case ALT(r1, r2) => 1 + size(r1) + size (r2)
+  case SEQ(r1, r2) => 1 + size(r1) + size (r2)
+  case STAR(r1) => 1 + size(r1)
+}
+
+
+
+// some testing data
+/*
+matcher(("a" ~ "b") ~ "c", "abc")  // => true
+matcher(("a" ~ "b") ~ "c", "ab")   // => false
+
+// the supposedly 'evil' regular expression (a*)* b
+val EVIL = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
+
+matcher(EVIL, "a" * 1000 ++ "b")   // => true
+matcher(EVIL, "a" * 1000)          // => false
+
+// size without simplifications
+size(der('a', der('a', EVIL)))             // => 28
+size(der('a', der('a', der('a', EVIL))))   // => 58
+
+// size with simplification
+size(simp(der('a', der('a', EVIL))))           // => 8
+size(simp(der('a', der('a', der('a', EVIL))))) // => 8
+
+// Java needs around 30 seconds for matching 28 a's with EVIL. 
+//
+// Lets see how long it takes to match strings with 
+// 0.5 Million a's...it should be in the range of some
+// seconds.
+
+def time_needed[T](i: Int, code: => T) = {
+  val start = System.nanoTime()
+  for (j <- 1 to i) code
+  val end = System.nanoTime()
+  (end - start)/(i * 1.0e9)
+}
+
+for (i <- 0 to 5000000 by 500000) {
+  println(i + " " + "%.5f".format(time_needed(2, matcher(EVIL, "a" * i))))
+}
+*/
+
+}