pre_testing3/postfix2.scala
changeset 346 663c2a9108d1
parent 300 72688efdf17c
equal deleted inserted replaced
345:40657f9a4e4a 346:663c2a9108d1
       
     1 // Shunting Yard Algorithm 
       
     2 // including Associativity for Operators 
       
     3 // =====================================
       
     4 
       
     5 object CW8b { 
       
     6 
       
     7 // type of tokens
       
     8 type Toks = List[String]
       
     9 
       
    10 // helper function for splitting strings into tokens
       
    11 def split(s: String) : Toks = s.split(" ").toList
       
    12 
       
    13 // left- and right-associativity
       
    14 abstract class Assoc
       
    15 case object LA extends Assoc
       
    16 case object RA extends Assoc
       
    17 
       
    18 // power is right-associative,
       
    19 // everything else is left-associative
       
    20 def assoc(s: String) : Assoc = s match {
       
    21   case "^" => RA
       
    22   case _ => LA
       
    23 }
       
    24 
       
    25 // the precedences of the operators
       
    26 val precs = Map("+" -> 1,
       
    27   		 "-" -> 1,
       
    28 		 "*" -> 2,
       
    29 		 "/" -> 2,
       
    30                  "^" -> 4)
       
    31 
       
    32 // the operations in the basic version of the algorithm
       
    33 val ops = List("+", "-", "*", "/", "^")
       
    34 
       
    35 // (8) Implement the extended version of the shunting yard algorithm.
       
    36 // This version should properly account for the fact that the power 
       
    37 // operation is right-associative. Apart from the extension to include
       
    38 // the power operation, you can make the same assumptions as in 
       
    39 // basic version.
       
    40 
       
    41 def is_op(op: String) : Boolean = ops.contains(op)
       
    42 
       
    43 def prec(op1: String, op2: String) : Boolean = assoc(op1) match {
       
    44   case LA => precs(op1) <= precs(op2)
       
    45   case RA => precs(op1) < precs(op2)
       
    46 }
       
    47 
       
    48 def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = (toks, st, out) match {
       
    49   case (Nil, _, _) => out.reverse ::: st
       
    50   case (num::in, st, out) if (num.forall(_.isDigit)) => 
       
    51     syard(in, st, num :: out)
       
    52   case (op1::in, op2::st, out) if (is_op(op1) && is_op(op2) && prec(op1, op2)) =>
       
    53     syard(op1::in, st, op2 :: out) 
       
    54   case (op1::in, st, out) if (is_op(op1)) => syard(in, op1::st, out)
       
    55   case ("("::in, st, out) => syard(in, "("::st, out)
       
    56   case (")"::in, op2::st, out) =>
       
    57     if (op2 == "(") syard(in, st, out) else syard(")"::in, st, op2 :: out)
       
    58   case (in, st, out) => {
       
    59     println(s"in: ${in}   st: ${st}   out: ${out.reverse}")
       
    60     Nil
       
    61   }  
       
    62 } 
       
    63 
       
    64 def op_comp(s: String, n1: Long, n2: Long) = s match {
       
    65   case "+" => n2 + n1
       
    66   case "-" => n2 - n1
       
    67   case "*" => n2 * n1
       
    68   case "/" => n2 / n1
       
    69   case "^" => Math.pow(n2, n1).toLong
       
    70 } 
       
    71 
       
    72 def compute(toks: Toks, st: List[Long] = Nil) : Long = (toks, st) match {
       
    73   case (Nil, st) => st.head
       
    74   case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st)
       
    75   case (num::in, st) => compute(in, num.toInt::st)  
       
    76 }
       
    77 
       
    78 
       
    79 
       
    80 
       
    81 //compute(syard(split("3 + 4 * ( 2 - 1 )")))   // 7
       
    82 //compute(syard(split("10 + 12 * 33")))       // 406
       
    83 //compute(syard(split("( 5 + 7 ) * 2")))      // 24
       
    84 //compute(syard(split("5 + 7 / 2")))          // 8
       
    85 //compute(syard(split("5 * 7 / 2")))          // 17
       
    86 //compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15
       
    87 
       
    88 //compute(syard(split("4 ^ 3 ^ 2")))      // 262144
       
    89 //compute(syard(split("4 ^ ( 3 ^ 2 )")))  // 262144
       
    90 //compute(syard(split("( 4 ^ 3 ) ^ 2")))  // 4096
       
    91 //compute(syard(split("( 3 + 1 ) ^ 2 ^ 3")))   // 65536
       
    92 
       
    93 //syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))  // 3 4 8 * 5 1 - 2 3 ^ ^ / +
       
    94 //compute(syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))) // 3
       
    95 
       
    96 //compute(syard(split("( 3 + 1 ) ^ 2 ^ 3")))   // 65536
       
    97 
       
    98 
       
    99 
       
   100 }