diff -r 40657f9a4e4a -r 663c2a9108d1 pre_testing3/postfix2.scala --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pre_testing3/postfix2.scala Sun Nov 01 01:21:31 2020 +0000 @@ -0,0 +1,100 @@ +// Shunting Yard Algorithm +// including Associativity for Operators +// ===================================== + +object CW8b { + +// type of tokens +type Toks = List[String] + +// helper function for splitting strings into tokens +def split(s: String) : Toks = s.split(" ").toList + +// left- and right-associativity +abstract class Assoc +case object LA extends Assoc +case object RA extends Assoc + +// power is right-associative, +// everything else is left-associative +def assoc(s: String) : Assoc = s match { + case "^" => RA + case _ => LA +} + +// the precedences of the operators +val precs = Map("+" -> 1, + "-" -> 1, + "*" -> 2, + "/" -> 2, + "^" -> 4) + +// the operations in the basic version of the algorithm +val ops = List("+", "-", "*", "/", "^") + +// (8) Implement the extended version of the shunting yard algorithm. +// This version should properly account for the fact that the power +// operation is right-associative. Apart from the extension to include +// the power operation, you can make the same assumptions as in +// basic version. + +def is_op(op: String) : Boolean = ops.contains(op) + +def prec(op1: String, op2: String) : Boolean = assoc(op1) match { + case LA => precs(op1) <= precs(op2) + case RA => precs(op1) < precs(op2) +} + +def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = (toks, st, out) match { + case (Nil, _, _) => out.reverse ::: st + case (num::in, st, out) if (num.forall(_.isDigit)) => + syard(in, st, num :: out) + case (op1::in, op2::st, out) if (is_op(op1) && is_op(op2) && prec(op1, op2)) => + syard(op1::in, st, op2 :: out) + case (op1::in, st, out) if (is_op(op1)) => syard(in, op1::st, out) + case ("("::in, st, out) => syard(in, "("::st, out) + case (")"::in, op2::st, out) => + if (op2 == "(") syard(in, st, out) else syard(")"::in, st, op2 :: out) + case (in, st, out) => { + println(s"in: ${in} st: ${st} out: ${out.reverse}") + Nil + } +} + +def op_comp(s: String, n1: Long, n2: Long) = s match { + case "+" => n2 + n1 + case "-" => n2 - n1 + case "*" => n2 * n1 + case "/" => n2 / n1 + case "^" => Math.pow(n2, n1).toLong +} + +def compute(toks: Toks, st: List[Long] = Nil) : Long = (toks, st) match { + case (Nil, st) => st.head + case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st) + case (num::in, st) => compute(in, num.toInt::st) +} + + + + +//compute(syard(split("3 + 4 * ( 2 - 1 )"))) // 7 +//compute(syard(split("10 + 12 * 33"))) // 406 +//compute(syard(split("( 5 + 7 ) * 2"))) // 24 +//compute(syard(split("5 + 7 / 2"))) // 8 +//compute(syard(split("5 * 7 / 2"))) // 17 +//compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15 + +//compute(syard(split("4 ^ 3 ^ 2"))) // 262144 +//compute(syard(split("4 ^ ( 3 ^ 2 )"))) // 262144 +//compute(syard(split("( 4 ^ 3 ) ^ 2"))) // 4096 +//compute(syard(split("( 3 + 1 ) ^ 2 ^ 3"))) // 65536 + +//syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3")) // 3 4 8 * 5 1 - 2 3 ^ ^ / + +//compute(syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))) // 3 + +//compute(syard(split("( 3 + 1 ) ^ 2 ^ 3"))) // 65536 + + + +}