templates4/postfix2.scala
changeset 220 3020f8c76baa
parent 219 44161f2c3226
child 288 65731df141a5
equal deleted inserted replaced
219:44161f2c3226 220:3020f8c76baa
     1 // Shunting Yard Algorithm
     1 // Shunting Yard Algorithm 
     2 // Edsger Dijkstra
     2 // including Associativity for Operators 
       
     3 // =====================================
       
     4 
       
     5 // type of tokens
       
     6 type Toks = List[String]
       
     7 
       
     8 // helper function for splitting strings into tokens
       
     9 def split(s: String) : Toks = s.split(" ").toList
       
    10 
       
    11 // left- and right-associativity
       
    12 abstract class Assoc
       
    13 case object LA extends Assoc
       
    14 case object RA extends Assoc
     3 
    15 
     4 
    16 
     5 type Toks = List[String]
    17 // power is right-associative,
     6 
    18 // everything else is left-associative
     7 def split(s: String) = s.split(" ").toList
       
     8 
       
     9 
       
    10 abstract class Assoc
       
    11 case object RA extends Assoc
       
    12 case object LA extends Assoc
       
    13 
       
    14 def assoc(s: String) : Assoc = s match {
    19 def assoc(s: String) : Assoc = s match {
    15   case "^" => RA
    20   case "^" => RA
    16   case _ => LA
    21   case _ => LA
    17 }
    22 }
    18 
    23 
    19 
    24 
       
    25 // the precedences of the operators
    20 val precs = Map("+" -> 1,
    26 val precs = Map("+" -> 1,
    21   		 "-" -> 1,
    27   		"-" -> 1,
    22 		 "*" -> 2,
    28 		"*" -> 2,
    23 		 "/" -> 2,
    29 		"/" -> 2,
    24                  "^" -> 4)
    30                 "^" -> 4)
    25 
    31 
       
    32 // the operations in the basic version of the algorithm
    26 val ops = List("+", "-", "*", "/", "^")
    33 val ops = List("+", "-", "*", "/", "^")
    27 
    34 
    28 def is_op(op: String) : Boolean = ops.contains(op)
    35 // (8) Implement the extended version of the shunting yard algorithm.
       
    36 // This version should properly account for the fact that the power 
       
    37 // operation is right-associative. Apart from the extension to include
       
    38 // the power operation, you can make the same assumptions as in 
       
    39 // basic version.
    29 
    40 
    30 def prec(op1: String, op2: String) : Boolean = assoc(op1) match {
    41 // def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = ...
    31   case LA => precs(op1) <= precs(op2)
       
    32   case RA => precs(op1) < precs(op2)
       
    33 }
       
    34 
       
    35 def syard(toks: Toks, st: Toks = Nil, rout: Toks = Nil) : Toks = (toks, st, rout) match {
       
    36   case (Nil, _, _) => rout.reverse ::: st
       
    37   case (num::in, st, rout) if (num.forall(_.isDigit)) => 
       
    38     syard(in, st, num :: rout)
       
    39   case (op1::in, op2::st, rout)  if (is_op(op1) && is_op(op2) && prec(op1, op2)) =>
       
    40     syard(op1::in, st, op2 :: rout) 
       
    41   case (op1::in, st, rout) if (is_op(op1)) => syard(in, op1::st, rout)
       
    42   case ("("::in, st, rout) => syard(in, "("::st, rout)
       
    43   case (")"::in, op2::st, rout) =>
       
    44     if (op2 == "(") syard(in, st, rout) else syard(")"::in, st, op2 :: rout)
       
    45   case (in, st, rout) => {
       
    46     println(s"in: ${in}   st: ${st}   rout: ${rout.reverse}")
       
    47     Nil
       
    48   }  
       
    49 } 
       
    50 
       
    51 def op_comp(s: String, n1: Long, n2: Long) = s match {
       
    52   case "+" => n2 + n1
       
    53   case "-" => n2 - n1
       
    54   case "*" => n2 * n1
       
    55   case "/" => n2 / n1
       
    56   case "^" => Math.pow(n2, n1).toLong
       
    57 } 
       
    58 
       
    59 def compute(toks: Toks, st: List[Long] = Nil) : Long = (toks, st) match {
       
    60   case (Nil, st) => st.head
       
    61   case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st)
       
    62   case (num::in, st) => compute(in, num.toInt::st)  
       
    63 }
       
    64 
    42 
    65 
    43 
       
    44 // test cases
       
    45 // syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))  // 3 4 8 * 5 1 - 2 3 ^ ^ / +
    66 
    46 
    67 
    47 
    68 compute(syard(split("3 + 4 * ( 2 - 1 )")))   // 7
    48 // (9) Implement a compute function that produces a Long(!) for an
    69 compute(syard(split("10 + 12 * 33")))       // 406
    49 // input list of tokens in postfix notation.
    70 compute(syard(split("( 5 + 7 ) * 2")))      // 24
       
    71 compute(syard(split("5 + 7 / 2")))          // 8
       
    72 compute(syard(split("5 * 7 / 2")))          // 17
       
    73 compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15
       
    74 
    50 
    75 compute(syard(split("4 ^ 3 ^ 2")))      // 262144
    51 //def compute(toks: Toks, st: List[Long] = Nil) : Long = ...
    76 compute(syard(split("4 ^ ( 3 ^ 2 )")))  // 262144
       
    77 compute(syard(split("( 4 ^ 3 ) ^ 2")))  // 4096
       
    78 
    52 
    79 
    53 
    80 syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))  // 3 4 8 * 5 1 - 2 3 ^ ^ / +
    54 // test cases
    81 compute(syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3")))
    55 // compute(syard(split("3 + 4 * ( 2 - 1 )")))   // 7
       
    56 // compute(syard(split("10 + 12 * 33")))       // 406
       
    57 // compute(syard(split("( 5 + 7 ) * 2")))      // 24
       
    58 // compute(syard(split("5 + 7 / 2")))          // 8
       
    59 // compute(syard(split("5 * 7 / 2")))          // 17
       
    60 // compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15
       
    61 // compute(syard(split("4 ^ 3 ^ 2")))      // 262144
       
    62 // compute(syard(split("4 ^ ( 3 ^ 2 )")))  // 262144
       
    63 // compute(syard(split("( 4 ^ 3 ) ^ 2")))  // 4096
       
    64 // compute(syard(split("( 3 + 1 ) ^ 2 ^ 3")))   // 65536
    82 
    65 
    83 compute(syard(split("( 3 + 1 ) ^ 2 ^ 3")))   // 65536
       
    84 
       
    85 
       
    86 def pow(n1: Long, n2: Long) = Math.pow(n1, n2).toLong