diff -r 44161f2c3226 -r 3020f8c76baa templates4/postfix2.scala --- a/templates4/postfix2.scala Wed Nov 28 17:13:40 2018 +0000 +++ b/templates4/postfix2.scala Wed Nov 28 23:26:47 2018 +0000 @@ -1,86 +1,65 @@ -// Shunting Yard Algorithm -// Edsger Dijkstra +// Shunting Yard Algorithm +// including Associativity for Operators +// ===================================== - +// type of tokens type Toks = List[String] -def split(s: String) = s.split(" ").toList +// helper function for splitting strings into tokens +def split(s: String) : Toks = s.split(" ").toList + +// left- and right-associativity +abstract class Assoc +case object LA extends Assoc +case object RA extends Assoc -abstract class Assoc -case object RA extends Assoc -case object LA extends Assoc - +// power is right-associative, +// everything else is left-associative def assoc(s: String) : Assoc = s match { case "^" => RA case _ => LA } +// the precedences of the operators val precs = Map("+" -> 1, - "-" -> 1, - "*" -> 2, - "/" -> 2, - "^" -> 4) + "-" -> 1, + "*" -> 2, + "/" -> 2, + "^" -> 4) +// the operations in the basic version of the algorithm val ops = List("+", "-", "*", "/", "^") -def is_op(op: String) : Boolean = ops.contains(op) - -def prec(op1: String, op2: String) : Boolean = assoc(op1) match { - case LA => precs(op1) <= precs(op2) - case RA => precs(op1) < precs(op2) -} +// (8) Implement the extended version of the shunting yard algorithm. +// This version should properly account for the fact that the power +// operation is right-associative. Apart from the extension to include +// the power operation, you can make the same assumptions as in +// basic version. -def syard(toks: Toks, st: Toks = Nil, rout: Toks = Nil) : Toks = (toks, st, rout) match { - case (Nil, _, _) => rout.reverse ::: st - case (num::in, st, rout) if (num.forall(_.isDigit)) => - syard(in, st, num :: rout) - case (op1::in, op2::st, rout) if (is_op(op1) && is_op(op2) && prec(op1, op2)) => - syard(op1::in, st, op2 :: rout) - case (op1::in, st, rout) if (is_op(op1)) => syard(in, op1::st, rout) - case ("("::in, st, rout) => syard(in, "("::st, rout) - case (")"::in, op2::st, rout) => - if (op2 == "(") syard(in, st, rout) else syard(")"::in, st, op2 :: rout) - case (in, st, rout) => { - println(s"in: ${in} st: ${st} rout: ${rout.reverse}") - Nil - } -} +// def syard(toks: Toks, st: Toks = Nil, out: Toks = Nil) : Toks = ... + -def op_comp(s: String, n1: Long, n2: Long) = s match { - case "+" => n2 + n1 - case "-" => n2 - n1 - case "*" => n2 * n1 - case "/" => n2 / n1 - case "^" => Math.pow(n2, n1).toLong -} - -def compute(toks: Toks, st: List[Long] = Nil) : Long = (toks, st) match { - case (Nil, st) => st.head - case (op::in, n1::n2::st) if (is_op(op)) => compute(in, op_comp(op, n1, n2)::st) - case (num::in, st) => compute(in, num.toInt::st) -} +// test cases +// syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3")) // 3 4 8 * 5 1 - 2 3 ^ ^ / + +// (9) Implement a compute function that produces a Long(!) for an +// input list of tokens in postfix notation. + +//def compute(toks: Toks, st: List[Long] = Nil) : Long = ... -compute(syard(split("3 + 4 * ( 2 - 1 )"))) // 7 -compute(syard(split("10 + 12 * 33"))) // 406 -compute(syard(split("( 5 + 7 ) * 2"))) // 24 -compute(syard(split("5 + 7 / 2"))) // 8 -compute(syard(split("5 * 7 / 2"))) // 17 -compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15 +// test cases +// compute(syard(split("3 + 4 * ( 2 - 1 )"))) // 7 +// compute(syard(split("10 + 12 * 33"))) // 406 +// compute(syard(split("( 5 + 7 ) * 2"))) // 24 +// compute(syard(split("5 + 7 / 2"))) // 8 +// compute(syard(split("5 * 7 / 2"))) // 17 +// compute(syard(split("9 + 24 / ( 7 - 3 )"))) // 15 +// compute(syard(split("4 ^ 3 ^ 2"))) // 262144 +// compute(syard(split("4 ^ ( 3 ^ 2 )"))) // 262144 +// compute(syard(split("( 4 ^ 3 ) ^ 2"))) // 4096 +// compute(syard(split("( 3 + 1 ) ^ 2 ^ 3"))) // 65536 -compute(syard(split("4 ^ 3 ^ 2"))) // 262144 -compute(syard(split("4 ^ ( 3 ^ 2 )"))) // 262144 -compute(syard(split("( 4 ^ 3 ) ^ 2"))) // 4096 - - -syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3")) // 3 4 8 * 5 1 - 2 3 ^ ^ / + -compute(syard(split("3 + 4 * 8 / ( 5 - 1 ) ^ 2 ^ 3"))) - -compute(syard(split("( 3 + 1 ) ^ 2 ^ 3"))) // 65536 - - -def pow(n1: Long, n2: Long) = Math.pow(n1, n2).toLong