| author | Christian Urban <christian.urban@kcl.ac.uk> |
| Fri, 14 Nov 2025 10:57:21 +0000 | |
| changeset 500 | fd7f8aff848c |
| parent 498 | 0f1b97538ad4 |
| child 502 | 5321311c02ad |
| permissions | -rw-r--r-- |
| 257 | 1 |
% !TEX program = xelatex |
| 6 | 2 |
\documentclass{article}
|
| 423 | 3 |
\usepackage{../styles/style}
|
4 |
\usepackage{../styles/langs}
|
|
| 218 | 5 |
\usepackage{disclaimer}
|
6 |
\usepackage{tikz}
|
|
7 |
\usepackage{pgf}
|
|
8 |
\usepackage{pgfplots}
|
|
9 |
\usepackage{stackengine}
|
|
| 498 | 10 |
\usepackage{scalerel}
|
11 |
\DeclareMathOperator*{\amp}{\scalerel*{\&}{\sum}}
|
|
| 218 | 12 |
%% \usepackage{accents}
|
13 |
\newcommand\barbelow[1]{\stackunder[1.2pt]{#1}{\raisebox{-4mm}{\boldmath$\uparrow$}}}
|
|
14 |
||
15 |
\begin{filecontents}{re-python2.data}
|
|
16 |
1 0.033 |
|
17 |
5 0.036 |
|
18 |
10 0.034 |
|
19 |
15 0.036 |
|
20 |
18 0.059 |
|
21 |
19 0.084 |
|
22 |
20 0.141 |
|
23 |
21 0.248 |
|
24 |
22 0.485 |
|
25 |
23 0.878 |
|
26 |
24 1.71 |
|
27 |
25 3.40 |
|
28 |
26 7.08 |
|
29 |
27 14.12 |
|
30 |
28 26.69 |
|
31 |
\end{filecontents}
|
|
32 |
||
33 |
\begin{filecontents}{re-java.data}
|
|
34 |
5 0.00298 |
|
35 |
10 0.00418 |
|
36 |
15 0.00996 |
|
37 |
16 0.01710 |
|
38 |
17 0.03492 |
|
39 |
18 0.03303 |
|
40 |
19 0.05084 |
|
41 |
20 0.10177 |
|
42 |
21 0.19960 |
|
43 |
22 0.41159 |
|
44 |
23 0.82234 |
|
45 |
24 1.70251 |
|
46 |
25 3.36112 |
|
47 |
26 6.63998 |
|
48 |
27 13.35120 |
|
49 |
28 29.81185 |
|
50 |
\end{filecontents}
|
|
51 |
||
| 221 | 52 |
\begin{filecontents}{re-js.data}
|
53 |
5 0.061 |
|
54 |
10 0.061 |
|
55 |
15 0.061 |
|
56 |
20 0.070 |
|
57 |
23 0.131 |
|
58 |
25 0.308 |
|
59 |
26 0.564 |
|
60 |
28 1.994 |
|
61 |
30 7.648 |
|
62 |
31 15.881 |
|
63 |
32 32.190 |
|
64 |
\end{filecontents}
|
|
65 |
||
| 218 | 66 |
\begin{filecontents}{re-java9.data}
|
67 |
1000 0.01410 |
|
68 |
2000 0.04882 |
|
69 |
3000 0.10609 |
|
70 |
4000 0.17456 |
|
71 |
5000 0.27530 |
|
72 |
6000 0.41116 |
|
73 |
7000 0.53741 |
|
74 |
8000 0.70261 |
|
75 |
9000 0.93981 |
|
76 |
10000 0.97419 |
|
77 |
11000 1.28697 |
|
78 |
12000 1.51387 |
|
79 |
14000 2.07079 |
|
80 |
16000 2.69846 |
|
81 |
20000 4.41823 |
|
82 |
24000 6.46077 |
|
83 |
26000 7.64373 |
|
84 |
30000 9.99446 |
|
85 |
34000 12.966885 |
|
86 |
38000 16.281621 |
|
87 |
42000 19.180228 |
|
88 |
46000 21.984721 |
|
89 |
50000 26.950203 |
|
90 |
60000 43.0327746 |
|
91 |
\end{filecontents}
|
|
92 |
||
| 351 | 93 |
\begin{filecontents}{re-swift.data}
|
94 |
5 0.001 |
|
95 |
10 0.001 |
|
96 |
15 0.009 |
|
97 |
20 0.178 |
|
98 |
23 1.399 |
|
99 |
24 2.893 |
|
100 |
25 5.671 |
|
101 |
26 11.357 |
|
102 |
27 22.430 |
|
103 |
\end{filecontents}
|
|
104 |
||
105 |
\begin{filecontents}{re-dart.data}
|
|
106 |
20 0.042 |
|
107 |
21 0.084 |
|
108 |
22 0.190 |
|
109 |
23 0.340 |
|
110 |
24 0.678 |
|
111 |
25 1.369 |
|
112 |
26 2.700 |
|
113 |
27 5.462 |
|
114 |
28 10.908 |
|
115 |
29 21.725 |
|
116 |
30 43.492 |
|
117 |
\end{filecontents}
|
|
| 6 | 118 |
|
119 |
\begin{document}
|
|
120 |
||
| 218 | 121 |
% BF IDE |
122 |
% https://www.microsoft.com/en-us/p/brainf-ck/9nblgggzhvq5 |
|
123 |
||
| 498 | 124 |
\section*{Main Part 3 (Scala, 6 Marks)}
|
| 6 | 125 |
|
| 422 | 126 |
\mbox{}\hfill\textit{``Java is the most distressing thing to happen to computing since MS-DOS.''}\smallskip\\
|
127 |
\mbox{}\hfill\textit{ --- Alan Kay, the inventor of object-oriented programming}\bigskip\medskip
|
|
| 275 | 128 |
|
129 |
\noindent |
|
| 351 | 130 |
This part is about a regular expression matcher described by |
| 412 | 131 |
Brzozowski in 1964. The |
| 351 | 132 |
background is that ``out-of-the-box'' regular expression matching in |
133 |
mainstream languages like Java, JavaScript and Python can sometimes be |
|
134 |
excruciatingly slow. You are supposed to implement a regular |
|
135 |
expression matcher that is much, much faster. \bigskip |
|
| 218 | 136 |
|
| 351 | 137 |
\IMPORTANTNONE{}
|
| 62 | 138 |
|
139 |
\noindent |
|
| 218 | 140 |
Also note that the running time of each part will be restricted to a |
| 257 | 141 |
maximum of 30 seconds on my laptop. |
| 218 | 142 |
|
143 |
\DISCLAIMER{}
|
|
| 86 | 144 |
|
| 221 | 145 |
\subsection*{Reference Implementation}
|
146 |
||
| 351 | 147 |
This Scala assignment comes with a reference implementation in form of |
148 |
a \texttt{jar}-file. This allows you to run any test cases on your own
|
|
| 498 | 149 |
computer. For example you can call \texttt{scala} on the command
|
| 472 | 150 |
line with the option \texttt{--extra-jars re.jar} and then query any function
|
151 |
from the \texttt{re.scala} template file. As usual you have to prefix
|
|
152 |
the calls with \texttt{M3} or import this object. Since some tasks
|
|
| 351 | 153 |
are time sensitive, you can check the reference implementation as |
154 |
follows: if you want to know, for example, how long it takes to match |
|
155 |
strings of $a$'s using the regular expression $(a^*)^*\cdot b$ you can |
|
156 |
query as follows: |
|
| 221 | 157 |
|
158 |
||
| 245 | 159 |
\begin{lstlisting}[xleftmargin=1mm,numbers=none,basicstyle=\ttfamily\small]
|
| 498 | 160 |
$ scala --extra-jars re.jar |
| 396 | 161 |
scala> import M3._ |
| 221 | 162 |
scala> for (i <- 0 to 5000000 by 500000) {
|
| 478 | 163 |
println(s"$i: ${time_needed(2, matcher(EVIL, "a" * i))}")
|
164 |
} |
|
| 292 | 165 |
0: 0.00002 secs. |
166 |
500000: 0.10608 secs. |
|
167 |
1000000: 0.22286 secs. |
|
168 |
1500000: 0.35982 secs. |
|
169 |
2000000: 0.45828 secs. |
|
170 |
2500000: 0.59558 secs. |
|
171 |
3000000: 0.73191 secs. |
|
172 |
3500000: 0.83499 secs. |
|
173 |
4000000: 0.99149 secs. |
|
174 |
4500000: 1.15395 secs. |
|
175 |
5000000: 1.29659 secs. |
|
| 221 | 176 |
\end{lstlisting}%$
|
177 |
||
| 478 | 178 |
\noindent |
179 |
For this you need to copy the \texttt{time\_needed} function and the \texttt{EVIL} regular
|
|
180 |
expression from the comments given in \texttt{re.scala}.
|
|
| 421 | 181 |
|
| 351 | 182 |
\subsection*{Preliminaries}
|
| 218 | 183 |
|
184 |
The task is to implement a regular expression matcher that is based on |
|
185 |
derivatives of regular expressions. Most of the functions are defined by |
|
186 |
recursion over regular expressions and can be elegantly implemented |
|
187 |
using Scala's pattern-matching. The implementation should deal with the |
|
188 |
following regular expressions, which have been predefined in the file |
|
189 |
\texttt{re.scala}:
|
|
| 6 | 190 |
|
| 218 | 191 |
\begin{center}
|
192 |
\begin{tabular}{lcll}
|
|
193 |
$r$ & $::=$ & $\ZERO$ & cannot match anything\\ |
|
194 |
& $|$ & $\ONE$ & can only match the empty string\\ |
|
195 |
& $|$ & $c$ & can match a single character (in this case $c$)\\ |
|
196 |
& $|$ & $r_1 + r_2$ & can match a string either with $r_1$ or with $r_2$\\ |
|
| 498 | 197 |
& $|$ & $r_1\cdot r_2$ & can match the first part of a string with $r_1$ and\\ |
| 218 | 198 |
& & & then the second part with $r_2$\\ |
| 498 | 199 |
& $|$ & $r_1 \,\&\, r_2$ & has to match a string with both $r_1$ and $r_2$\\ |
| 221 | 200 |
& $|$ & $r^*$ & can match a string with zero or more copies of $r$\\ |
| 498 | 201 |
& $|$ & $r^{\{n\}}$ & can match a string with exactly n copies of $r$\\
|
| 218 | 202 |
\end{tabular}
|
203 |
\end{center}
|
|
| 6 | 204 |
|
| 218 | 205 |
\noindent |
| 221 | 206 |
Why? Regular expressions are |
207 |
one of the simplest ways to match patterns in text, and |
|
| 218 | 208 |
are endlessly useful for searching, editing and analysing data in all |
209 |
sorts of places (for example analysing network traffic in order to |
|
210 |
detect security breaches). However, you need to be fast, otherwise you |
|
| 498 | 211 |
will stumble over problems such as reported in |
| 218 | 212 |
|
213 |
{\small
|
|
214 |
\begin{itemize}
|
|
| 289 | 215 |
\item[$\bullet$] \url{https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019}
|
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
216 |
\item[$\bullet$] \texttt{\href{https://web.archive.org/web/20160801163029/https://www.stackstatus.net/post/147710624694/outage-postmortem-july-20-2016}{https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016}}
|
| 218 | 217 |
\item[$\bullet$] \url{https://vimeo.com/112065252}
|
| 289 | 218 |
\item[$\bullet$] \url{https://davidvgalbraith.com/how-i-fixed-atom}
|
| 218 | 219 |
\end{itemize}}
|
220 |
||
| 221 | 221 |
% Knowing how to match regular expressions and strings will let you |
222 |
% solve a lot of problems that vex other humans. |
|
223 |
||
224 |
||
| 218 | 225 |
\subsubsection*{Tasks (file re.scala)}
|
| 6 | 226 |
|
| 218 | 227 |
The file \texttt{re.scala} has already a definition for regular
|
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
228 |
expressions and also defines some handy shorthand notation for regular |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
229 |
expressions. The notation in this coursework description matches up |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
230 |
with the code as follows: |
| 218 | 231 |
|
232 |
\begin{center}
|
|
233 |
\begin{tabular}{rcl@{\hspace{10mm}}l}
|
|
234 |
& & code: & shorthand:\smallskip \\ |
|
235 |
$\ZERO$ & $\mapsto$ & \texttt{ZERO}\\
|
|
236 |
$\ONE$ & $\mapsto$ & \texttt{ONE}\\
|
|
237 |
$c$ & $\mapsto$ & \texttt{CHAR(c)}\\
|
|
238 |
$r_1 + r_2$ & $\mapsto$ & \texttt{ALT(r1, r2)} & \texttt{r1 | r2}\\
|
|
239 |
$r_1 \cdot r_2$ & $\mapsto$ & \texttt{SEQ(r1, r2)} & \texttt{r1 $\sim$ r2}\\
|
|
| 498 | 240 |
$r_1 \,\&\, r_2$ & $\mapsto$ & \texttt{AND(r1, r2)}\\
|
241 |
$r^*$ & $\mapsto$ & \texttt{STAR(r)} & \texttt{r.\%}\\
|
|
242 |
$r^{\{n\}}$ & $\mapsto$ & \texttt{REP(r, n)} &
|
|
| 218 | 243 |
\end{tabular}
|
244 |
\end{center}
|
|
245 |
||
|
105
0f9f774c7697
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
100
diff
changeset
|
246 |
\begin{itemize}
|
| 351 | 247 |
\item[(1)] Implement a function, called \textit{nullable}, by
|
| 218 | 248 |
recursion over regular expressions. This function tests whether a |
249 |
regular expression can match the empty string. This means given a |
|
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
250 |
regular expression, it either returns true or false. The function |
| 218 | 251 |
\textit{nullable}
|
252 |
is defined as follows: |
|
253 |
||
254 |
\begin{center}
|
|
255 |
\begin{tabular}{lcl}
|
|
256 |
$\textit{nullable}(\ZERO)$ & $\dn$ & $\textit{false}$\\
|
|
257 |
$\textit{nullable}(\ONE)$ & $\dn$ & $\textit{true}$\\
|
|
258 |
$\textit{nullable}(c)$ & $\dn$ & $\textit{false}$\\
|
|
| 498 | 259 |
$\textit{nullable}(r_1 + r_2)$ & $\dn$ & $\textit{nullable}(r_1) \vee \textit{nullable}(r_2)$\\
|
260 |
$\textit{nullable}(r_1 \cdot r_2)$ & $\dn$ & $\textit{nullable}(r_1) \wedge \textit{nullable}(r_2)$\\
|
|
261 |
$\textit{nullable}(r_1 \& r_2)$ & $\dn$ & $\textit{nullable}(r_1) \wedge \textit{nullable}(r_2)$\\
|
|
| 218 | 262 |
$\textit{nullable}(r^*)$ & $\dn$ & $\textit{true}$\\
|
| 498 | 263 |
$\textit{nullable}(r^{\{n\}})$ & $\dn$ &
|
264 |
$\begin{cases}\textit{true} & n = 0\\
|
|
265 |
\textit{nullable}(r) & \textit{otherwise}
|
|
266 |
\end{cases}$\\
|
|
| 218 | 267 |
\end{tabular}
|
| 396 | 268 |
\end{center}~\hfill[0.5 Marks]
|
|
105
0f9f774c7697
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
100
diff
changeset
|
269 |
|
| 351 | 270 |
\item[(2)] Implement a function, called \textit{der}, by recursion over
|
| 218 | 271 |
regular expressions. It takes a character and a regular expression |
| 421 | 272 |
as arguments and calculates the \emph{derivative} of a regular expression according
|
| 218 | 273 |
to the rules: |
|
105
0f9f774c7697
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
100
diff
changeset
|
274 |
|
| 218 | 275 |
\begin{center}
|
276 |
\begin{tabular}{lcl}
|
|
277 |
$\textit{der}\;c\;(\ZERO)$ & $\dn$ & $\ZERO$\\
|
|
278 |
$\textit{der}\;c\;(\ONE)$ & $\dn$ & $\ZERO$\\
|
|
279 |
$\textit{der}\;c\;(d)$ & $\dn$ & $\textit{if}\; c = d\;\textit{then} \;\ONE \; \textit{else} \;\ZERO$\\
|
|
| 498 | 280 |
$\textit{der}\;c\;(r_1 + r_2)$ & $\dn$ & $(\textit{der}\;c\;r_1) + (\textit{der}\;c\;r_2)$\\
|
281 |
$\textit{der}\;c\;(r_1 \& r_2)$ & $\dn$ & $(\textit{der}\;c\;r_1) \,\&\, (\textit{der}\;c\;r_2)$\\
|
|
282 |
$\textit{der}\;c\;(r_1 \cdot r_2)$ & $\dn$ & $\textit{if}\;\textit{nullable}(r_1)$\\
|
|
283 |
& & $\textit{then}\;(\textit{der}\;c\;r_1)\cdot r_2 \,+\, (\textit{der}\;c\;r_2)$\\
|
|
284 |
& & $\textit{else}\;(\textit{der}\;c\;r_1)\cdot r_2$\\
|
|
| 218 | 285 |
$\textit{der}\;c\;(r^*)$ & $\dn$ & $(\textit{der}\;c\;r)\cdot (r^*)$\\
|
| 498 | 286 |
$\textit{der}\;c\;(r^{\{n\}})$ & $\dn$ &
|
287 |
$\begin{cases}\ZERO & n = 0\\
|
|
288 |
(der\,c\,r)\cdot (r^{\{n-1\}}) & \textit{otherwise}
|
|
289 |
\end{cases}$\\
|
|
| 218 | 290 |
\end{tabular}
|
291 |
\end{center}
|
|
| 498 | 292 |
\mbox{}\hfill\mbox{[1.5 Marks]}
|
293 |
||
294 |
% \item[(3)] We next want to simplify regular expressions: essentially |
|
295 |
% we want to remove $\ZERO$ in regular expressions like $r + \ZERO$ |
|
296 |
% and $\ZERO + r$. However, our n-ary alternative takes a list of |
|
297 |
% regular expressions as argument, and we therefore need a more general |
|
298 |
% ``denesting'' function, which deletes $\ZERO$s and ``spills out'' nested |
|
299 |
% $\sum$s. This function, called \texttt{denest}, should analyse a
|
|
300 |
% list of regular expressions, say $rs$, as follows: |
|
| 218 | 301 |
|
| 498 | 302 |
% \begin{center}
|
303 |
% \begin{tabular}{lllll}
|
|
304 |
% 1) &$rs = []$ & $\dn$ & $[]$ & (empty list)\\ |
|
305 |
% 2) &$rs = \ZERO :: rest$ & $\dn$ & $\texttt{denest}\;rest$ & (throw away $\ZERO$)\\
|
|
306 |
% 3) &$rs = (\sum rs) :: rest$ & $\dn$ & $rs ::: \texttt{denest}\;rest$ & (spill out $\sum$)\\
|
|
307 |
% 4) &$rs = r :: rest$ & $\dn$ & $r :: \texttt{denest}\;rest$ & (otherwise)\\
|
|
308 |
% \end{tabular}
|
|
309 |
% \end{center}
|
|
310 |
||
311 |
% The first clause states that empty lists cannot be further |
|
312 |
% denested. The second removes the first $\ZERO$ from the list and recurses. |
|
313 |
% The third is when the first regular expression is an \texttt{ALTs}, then
|
|
314 |
% the content of this alternative should be spilled out and appended |
|
315 |
% with the denested rest of the list. The last case is for all other |
|
316 |
% cases where the head of the list is not $\ZERO$ and not an \texttt{ALTs},
|
|
317 |
% then we just keep the head of the list and denest the rest.\\ |
|
318 |
% \mbox{}\hfill\mbox{[1 Mark]}
|
|
319 |
||
320 |
\item[(3)] Implement the function \textit{simp}, which recursively
|
|
321 |
traverses a regular expression, and on the way up simplifies every |
|
322 |
regular expression on the left (see below) to the regular expression |
|
323 |
on the right, except it does not simplify inside ${}^*$ and ${}^{\{n\}}$-regular
|
|
324 |
expressions. |
|
| 396 | 325 |
|
326 |
\begin{center}
|
|
| 498 | 327 |
\begin{tabular}{l@{\hspace{4mm}}c@{\hspace{4mm}}ll}
|
328 |
$r \cdot \ZERO$ & $\mapsto$ & $\ZERO$\\ |
|
329 |
$\ZERO \cdot r$ & $\mapsto$ & $\ZERO$\\ |
|
330 |
$r \cdot \ONE$ & $\mapsto$ & $r$\\ |
|
331 |
$\ONE \cdot r$ & $\mapsto$ & $r$\\ |
|
332 |
$r + \ZERO$ & $\mapsto$ & $r$\\ |
|
333 |
$\ZERO + r$ & $\mapsto$ & $r$\\ |
|
334 |
$r + r$ & $\mapsto$ & $r$\\ |
|
335 |
$r \,\&\, \ZERO$ & $\mapsto$ & $\ZERO$\\ |
|
336 |
$\ZERO \,\&\, r$ & $\mapsto$ & $\ZERO$\\ |
|
337 |
$r \,\&\, r$ & $\mapsto$ & $r$\\ |
|
338 |
\end{tabular}
|
|
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
339 |
\end{center}
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
340 |
|
| 498 | 341 |
For example the regular expression |
342 |
\[(r_1 + \ZERO) \cdot \ONE + ((\ONE + r_2) + r_3) \,\&\, (r_4 \cdot \ZERO)\] |
|
343 |
||
344 |
simplifies to just $r_1$. \textbf{Hint:} Regular expressions can be
|
|
345 |
seen as trees and there are several methods for traversing |
|
346 |
trees. One of them corresponds to the inside-out traversal, which is also |
|
347 |
sometimes called post-order tra\-versal: you traverse inside the |
|
348 |
tree and on the way up you apply simplification rules. |
|
349 |
\textbf{Another Hint:}
|
|
350 |
Remember numerical expressions from school times---there you had expressions |
|
351 |
like $u + \ldots + (1 \cdot x) - \ldots (z + (y \cdot 0)) \ldots$ |
|
352 |
and simplification rules that looked very similar to rules |
|
353 |
above. You would simplify such numerical expressions by replacing |
|
354 |
for example the $y \cdot 0$ by $0$, or $1\cdot x$ by $x$, and then |
|
355 |
look whether more rules are applicable. If you organise the |
|
356 |
simplification in an inside-out fashion, it is always clear which |
|
357 |
simplification should be applied next.\hfill[2 Marks] |
|
358 |
||
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
359 |
|
| 498 | 360 |
% \item[(4)] Implement the function \texttt{flts} which flattens our
|
361 |
% n-ary sequence regular expression $\prod$. Like \texttt{denest}, this
|
|
362 |
% function is intended to delete $\ONE$s and spill out nested $\prod$s. |
|
363 |
% Unfortunately, there is a special case to do with $\ZERO$: If this function encounters a $\ZERO$, then |
|
364 |
% the whole ``product'' should be $\ZERO$. The problem is that the $\ZERO$ can be anywhere |
|
365 |
% inside the list. The easiest way to implement this function is therefore by using an |
|
366 |
% accumulator, which when called is set to \texttt{Nil}. This means \textit{flts} takes
|
|
367 |
% two arguments (which are both lists of regular expressions) |
|
368 |
||
369 |
% \[ |
|
370 |
% \texttt{flts}\;rs\;acc
|
|
371 |
% \] |
|
372 |
||
373 |
% This function analyses the list $rs$ as follows |
|
374 |
||
375 |
% \begin{center}
|
|
376 |
% \begin{tabular}{@{}lllll@{}}
|
|
377 |
% 1) &$rs = []$ & $\dn$ & $acc$ & (empty list)\\ |
|
378 |
% 2) &$rs = \ZERO :: rest$ & $\dn$ & $[\ZERO]$ & (special case for $\ZERO$)\\ |
|
379 |
% 3) &$rs = \ONE :: rest$ & $\dn$ & $\texttt{flts}\,rest\,acc$ & (throw away $\ONE$)\\
|
|
380 |
% 4) &$rs = (\prod rs) :: rest$ & $\dn$ & $\texttt{flts}\;rest\,(acc ::: rs)$ & (spill out $\prod$)\\
|
|
381 |
% 5) &$rs = r :: rest$ & $\dn$ & $\texttt{flts}\;rest\,(acc ::: [r])$& (otherwise)\\
|
|
382 |
% \end{tabular}
|
|
383 |
% \end{center}
|
|
384 |
||
385 |
% In the first case we just return whatever has accumulated in |
|
386 |
% $acc$. In the fourth case we spill out the $rs$ by appending the |
|
387 |
% $rs$ to the end of the accumulator. Similarly in the last case we |
|
388 |
% append the single regular expression $r$ to the end of the |
|
389 |
% accumulator. I let you think why you have to add it to the end. \mbox{}\hfill\mbox{[1 Mark]}
|
|
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
390 |
|
| 498 | 391 |
% \item[(5)] Before we can simplify regular expressions, we need what is often called |
392 |
% \emph{smart constructors} for $\sum$ and $\prod$. While the ``normal'' constructors
|
|
393 |
% \texttt{ALTs} and \texttt{SEQs} give us alternatives and sequences, respectively, \emph{smart}
|
|
394 |
% constructors might return something different depending on what list of regular expressions |
|
395 |
% they are given as argument. |
|
396 |
||
397 |
% \begin{center}
|
|
398 |
% \begin{tabular}{@{}c@{\hspace{9mm}}c@{}}
|
|
399 |
% \begin{tabular}{l@{\hspace{2mm}}l@{\hspace{1mm}}ll}
|
|
400 |
% & $\sum^{smart}$\smallskip\\
|
|
401 |
% 1) & $rs = []$ & $\dn$ & $\ZERO$\\ |
|
402 |
% 2) & $rs = [r]$ & $\dn$ & $r$\\ \\ |
|
403 |
% 3) & otherwise & $\dn$ & $\sum\,rs$ |
|
404 |
% \end{tabular} &
|
|
405 |
% \begin{tabular}{l@{\hspace{2mm}}l@{\hspace{1mm}}ll}
|
|
406 |
% & $\prod^{smart}$\smallskip\\
|
|
407 |
% 1) & $rs = []$ & $\dn$ & $\ONE$\\ |
|
408 |
% 2a) & $rs = [\ZERO]$ & $\dn$ & $\ZERO$\\ |
|
409 |
% 2b) & $rs = [r]$ & $\dn$ & $r$\\ |
|
410 |
% 3) & otherwise & $\dn$ & $\prod\,rs$ |
|
411 |
% \end{tabular}
|
|
412 |
% \end{tabular}
|
|
413 |
% \end{center}
|
|
414 |
% \mbox{}\hfill\mbox{[0.5 Marks]}
|
|
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
415 |
|
| 498 | 416 |
% \item[(6)] Implement the function \textit{simp}, which recursively
|
417 |
% traverses a regular expression, and on the way up simplifies every |
|
418 |
% regular expression on the left (see below) to the regular expression |
|
419 |
% on the right, except it does not simplify inside ${}^*$-regular
|
|
420 |
% expressions and also does not simplify $\ZERO$, $\ONE$ and characters. |
|
|
105
0f9f774c7697
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
100
diff
changeset
|
421 |
|
| 498 | 422 |
% \begin{center}
|
423 |
% \begin{tabular}{@{}l@{\hspace{3mm}}c@{\hspace{3mm}}ll@{}}
|
|
424 |
% LHS: & & RHS:\smallskip\\ |
|
425 |
% $\sum\;[r_1,..,r_n]$ & $\mapsto$ & $\sum^{smart}\;(\texttt{(denest + distinct)}[simp(r_1),..,simp(r_n)])$\\
|
|
426 |
% $\prod\;[r_1,..,r_n]$ & $\mapsto$ & $\prod^{smart}\;(\texttt{(flts)}[simp(r_1),..,simp(r_n)])$\\
|
|
427 |
% $r$ & $\mapsto$ & $r$ \quad (all other cases) |
|
428 |
% \end{tabular}
|
|
429 |
% \end{center}
|
|
| 396 | 430 |
|
| 498 | 431 |
% The first case is as follows: first apply $simp$ to all regular |
432 |
% expressions $r_1,.. ,r_n$; then denest the resulting list using |
|
433 |
% \texttt{denest}; after that remove all duplicates in this list (this can be
|
|
434 |
% done in Scala using the function |
|
435 |
% \texttt{\_.distinct}). Finally, you end up with a list of (simplified)
|
|
436 |
% regular expressions; apply the smart constructor $\sum^{smart}$ to this list.
|
|
437 |
% Similarly in the $\prod$ case: simplify first all regular |
|
438 |
% expressions $r_1,.. ,r_n$; then flatten the resulting list using \texttt{flts} and apply the
|
|
439 |
% smart constructor $\prod^{smart}$ to the result. In all other cases, just return the
|
|
440 |
% input $r$ as is. |
|
| 415 | 441 |
|
|
105
0f9f774c7697
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
100
diff
changeset
|
442 |
|
| 498 | 443 |
% For example the regular expression |
444 |
% \[(r_1 + \ZERO) \cdot \ONE + ((\ONE + r_2) + r_3) \cdot (r_4 \cdot \ZERO)\] |
|
| 218 | 445 |
|
| 498 | 446 |
% simplifies to just $r_1$. \mbox{}\hfill\mbox{[1 Mark]}
|
| 218 | 447 |
|
| 498 | 448 |
\item[(4)] Implement two functions: The first, called \textit{ders},
|
| 218 | 449 |
takes a list of characters and a regular expression as arguments, and |
450 |
builds the derivative w.r.t.~the list as follows: |
|
451 |
||
452 |
\begin{center}
|
|
453 |
\begin{tabular}{lcl}
|
|
454 |
$\textit{ders}\;(Nil)\;r$ & $\dn$ & $r$\\
|
|
455 |
$\textit{ders}\;(c::cs)\;r$ & $\dn$ &
|
|
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
456 |
$\textit{ders}\;cs\;(\textit{simp}\,(\textit{der}\;c\;r))$\\
|
| 218 | 457 |
\end{tabular}
|
458 |
\end{center}
|
|
459 |
||
460 |
Note that this function is different from \textit{der}, which only
|
|
461 |
takes a single character. |
|
462 |
||
463 |
The second function, called \textit{matcher}, takes a string and a
|
|
464 |
regular expression as arguments. It builds first the derivatives |
|
465 |
according to \textit{ders} and after that tests whether the resulting
|
|
466 |
derivative regular expression can match the empty string (using |
|
467 |
\textit{nullable}). For example the \textit{matcher} will produce
|
|
468 |
true for the regular expression $(a\cdot b)\cdot c$ and the string |
|
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
469 |
$abc$, but false if you give it the string $ab$. \hfill[0.5 Mark] |
| 218 | 470 |
|
| 498 | 471 |
\item[(5)] Implement a function, called \textit{size}, by recursion
|
| 218 | 472 |
over regular expressions. If a regular expression is seen as a tree, |
473 |
then \textit{size} should return the number of nodes in such a
|
|
474 |
tree. Therefore this function is defined as follows: |
|
475 |
||
476 |
\begin{center}
|
|
| 498 | 477 |
\begin{tabular}{lcll}
|
| 218 | 478 |
$\textit{size}(\ZERO)$ & $\dn$ & $1$\\
|
479 |
$\textit{size}(\ONE)$ & $\dn$ & $1$\\
|
|
480 |
$\textit{size}(c)$ & $\dn$ & $1$\\
|
|
| 498 | 481 |
$\textit{size}(r_1 \,?\, r_2)$ & $\dn$ & $1 + \textit{size}(r_1) + \textit{size}(r_2)$ & where $? \in \{\cdot, +, \&\}$\\
|
| 218 | 482 |
$\textit{size}(r^*)$ & $\dn$ & $1 + \textit{size}(r)$\\
|
| 498 | 483 |
$\textit{size}(r^{\{n\}})$ & $\dn$ & $1 + \textit{size}(r)$\\
|
| 218 | 484 |
\end{tabular}
|
485 |
\end{center}
|
|
486 |
||
| 224 | 487 |
You can use \textit{size} in order to test how much the ``evil'' regular
|
| 218 | 488 |
expression $(a^*)^* \cdot b$ grows when taking successive derivatives |
489 |
according the letter $a$ without simplification and then compare it to |
|
490 |
taking the derivative, but simplify the result. The sizes |
|
| 396 | 491 |
are given in \texttt{re.scala}. \hfill[0.5 Marks]
|
| 221 | 492 |
|
| 498 | 493 |
\item[(6)] You do not have to implement anything specific under this |
| 221 | 494 |
task. The purpose here is that you will be marked for some ``power'' |
495 |
test cases. For example can your matcher decide within 30 seconds |
|
496 |
whether the regular expression $(a^*)^*\cdot b$ matches strings of the |
|
497 |
form $aaa\ldots{}aaaa$, for say 1 Million $a$'s. And does simplification
|
|
498 |
simplify the regular expression |
|
499 |
||
500 |
\[ |
|
501 |
\texttt{SEQ(SEQ(SEQ(..., ONE | ONE) , ONE | ONE), ONE | ONE)}
|
|
502 |
\] |
|
503 |
||
504 |
\noindent correctly to just \texttt{ONE}, where \texttt{SEQ} is nested
|
|
| 245 | 505 |
50 or more times?\\ |
| 396 | 506 |
\mbox{}\hfill[1 Mark]
|
|
105
0f9f774c7697
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
100
diff
changeset
|
507 |
\end{itemize}
|
|
0f9f774c7697
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
100
diff
changeset
|
508 |
|
| 218 | 509 |
\subsection*{Background}
|
510 |
||
| 500 | 511 |
Although easily implementable in Scala (ok maybe the \texttt{simp} function and
|
| 498 | 512 |
the constructors \texttt{ALT}/\texttt{SEQ}/\texttt{AND} needs a bit more thinking), the idea behind the
|
| 396 | 513 |
derivative function might not so easy to be seen. To understand its |
514 |
purpose better, assume a regular expression $r$ can match strings of |
|
515 |
the form $c\!::\!cs$ (that means strings which start with a character |
|
516 |
$c$ and have some rest, or tail, $cs$). If you take the derivative of |
|
517 |
$r$ with respect to the character $c$, then you obtain a regular |
|
518 |
expression that can match all the strings $cs$. In other words, the |
|
519 |
regular expression $\textit{der}\;c\;r$ can match the same strings
|
|
520 |
$c\!::\!cs$ that can be matched by $r$, except that the $c$ is chopped |
|
521 |
off. |
|
| 218 | 522 |
|
523 |
Assume now $r$ can match the string $abc$. If you take the derivative |
|
524 |
according to $a$ then you obtain a regular expression that can match |
|
525 |
$bc$ (it is $abc$ where the $a$ has been chopped off). If you now |
|
526 |
build the derivative $\textit{der}\;b\;(\textit{der}\;a\;r)$ you
|
|
527 |
obtain a regular expression that can match the string $c$ (it is $bc$ |
|
528 |
where $b$ is chopped off). If you finally build the derivative of this |
|
529 |
according $c$, that is |
|
530 |
$\textit{der}\;c\;(\textit{der}\;b\;(\textit{der}\;a\;r))$, you obtain
|
|
531 |
a regular expression that can match the empty string. You can test |
|
532 |
whether this is indeed the case using the function nullable, which is |
|
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
533 |
what the matcher you have implemented is doing. |
| 218 | 534 |
|
535 |
The purpose of the $\textit{simp}$ function is to keep the regular
|
|
536 |
expressions small. Normally the derivative function makes the regular |
|
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
537 |
expression bigger (see the \texttt{SEQs} case and the example in Task (2)) and the
|
| 218 | 538 |
algorithm would be slower and slower over time. The $\textit{simp}$
|
539 |
function counters this increase in size and the result is that the |
|
540 |
algorithm is fast throughout. By the way, this algorithm is by Janusz |
|
541 |
Brzozowski who came up with the idea of derivatives in 1964 in his PhD |
|
542 |
thesis. |
|
543 |
||
544 |
\begin{center}\small
|
|
545 |
\url{https://en.wikipedia.org/wiki/Janusz_Brzozowski_(computer_scientist)}
|
|
546 |
\end{center}
|
|
547 |
||
|
105
0f9f774c7697
updated
Christian Urban <christian dot urban at kcl dot ac dot uk>
parents:
100
diff
changeset
|
548 |
|
| 218 | 549 |
If you want to see how badly the regular expression matchers do in |
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
550 |
Java\footnote{Version 8 and below; Version 9 and above does not seem
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
551 |
to be as catastrophic, but still much worse than the regular |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
552 |
expression matcher based on derivatives. BTW, Scala uses the regular |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
553 |
expression matcher provided by the Java libraries. So is just as bad.}, JavaScript, |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
554 |
Python Swift and Dart with the ``evil'' regular expression |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
555 |
$(a^*)^*\cdot b$, then have a look at the graphs below (you can try it |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
556 |
out for yourself: have a look at the files |
| 351 | 557 |
\texttt{catastrophic9.java}, \texttt{catastrophic.js},
|
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
558 |
\texttt{catastrophic.py} etc on KEATS). Compare this with the matcher
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
559 |
you have implemented. How long can a string of $a$'s be in your |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
560 |
matcher and still stay within the 30 seconds time limit? It should be |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
561 |
mu(uu)$^*$ch better than your off-the-shelf matcher in your |
| 472 | 562 |
bog-standard programming language. |
| 78 | 563 |
|
| 218 | 564 |
\begin{center}
|
565 |
\begin{tabular}{@{}cc@{}}
|
|
566 |
\multicolumn{2}{c}{Graph: $(a^*)^*\cdot b$ and strings
|
|
| 421 | 567 |
$\underbrace{a\ldots a}_{n}$}\medskip\\
|
| 218 | 568 |
|
569 |
\begin{tikzpicture}
|
|
570 |
\begin{axis}[
|
|
571 |
xlabel={$n$},
|
|
572 |
x label style={at={(1.05,0.0)}},
|
|
573 |
ylabel={time in secs},
|
|
574 |
y label style={at={(0.06,0.5)}},
|
|
575 |
enlargelimits=false, |
|
576 |
xtick={0,5,...,30},
|
|
577 |
xmax=33, |
|
578 |
ymax=45, |
|
579 |
ytick={0,5,...,40},
|
|
580 |
scaled ticks=false, |
|
581 |
axis lines=left, |
|
582 |
width=6cm, |
|
| 421 | 583 |
height=5.5cm, |
| 351 | 584 |
legend entries={Python, Java 8, JavaScript, Swift, Dart},
|
| 222 | 585 |
legend pos=north west, |
586 |
legend cell align=left] |
|
| 218 | 587 |
\addplot[blue,mark=*, mark options={fill=white}] table {re-python2.data};
|
588 |
\addplot[cyan,mark=*, mark options={fill=white}] table {re-java.data};
|
|
| 221 | 589 |
\addplot[red,mark=*, mark options={fill=white}] table {re-js.data};
|
| 351 | 590 |
\addplot[magenta,mark=*, mark options={fill=white}] table {re-swift.data};
|
591 |
\addplot[brown,mark=*, mark options={fill=white}] table {re-dart.data};
|
|
| 218 | 592 |
\end{axis}
|
593 |
\end{tikzpicture}
|
|
594 |
& |
|
595 |
\begin{tikzpicture}
|
|
596 |
\begin{axis}[
|
|
597 |
xlabel={$n$},
|
|
598 |
x label style={at={(1.05,0.0)}},
|
|
599 |
ylabel={time in secs},
|
|
600 |
y label style={at={(0.06,0.5)}},
|
|
601 |
%enlargelimits=false, |
|
602 |
%xtick={0,5000,...,30000},
|
|
603 |
xmax=65000, |
|
604 |
ymax=45, |
|
605 |
ytick={0,5,...,40},
|
|
606 |
scaled ticks=false, |
|
607 |
axis lines=left, |
|
608 |
width=6cm, |
|
| 421 | 609 |
height=5.5cm, |
| 498 | 610 |
legend entries={Java 9 and above},
|
| 218 | 611 |
legend pos=north west] |
612 |
\addplot[cyan,mark=*, mark options={fill=white}] table {re-java9.data};
|
|
613 |
\end{axis}
|
|
614 |
\end{tikzpicture}
|
|
615 |
\end{tabular}
|
|
616 |
\end{center}
|
|
| 480 | 617 |
|
618 |
%\end{document}
|
|
| 218 | 619 |
\newpage |
620 |
||
| 480 | 621 |
\noindent |
622 |
For the calculation below, I prefer to use the more ``mathematical'' |
|
623 |
notation for regular expressions. Therefore let us first look at this |
|
624 |
notation and the corresponding Scala code. |
|
625 |
||
626 |
\begin{center}
|
|
627 |
\begin{tabular}{r@{\hspace{10mm}}l}
|
|
628 |
``mathematical'' notation & \\ |
|
629 |
for regular expressions & Scala code\smallskip\\ |
|
630 |
$\ZERO$ & \texttt{ZERO}\\
|
|
631 |
$\ONE$ & \texttt{ONE}\\
|
|
632 |
$c$ & \texttt{CHAR(c)}\\
|
|
633 |
$\sum rs$ & \texttt{ALTs(rs)}\\
|
|
634 |
$\prod rs$ & \texttt{SEQs(rs)}\\
|
|
635 |
$r^*$ & \texttt{STAR(r)}
|
|
636 |
\end{tabular}
|
|
637 |
\end{center}
|
|
638 |
||
639 |
\noindent |
|
640 |
My own convention is that \texttt{rs} stands for a list of regular
|
|
641 |
expressions. Also of note is that these are \textbf{all} regular
|
|
642 |
expressions in Main 3 and the template file defines them as the |
|
643 |
(algebraic) datatype \texttt{Rexp}. A confusion might arise from the
|
|
644 |
fact that there is also some shorthand notation for some regular |
|
645 |
expressions, namely |
|
646 |
||
647 |
\begin{lstlisting}[xleftmargin=10mm,numbers=none]
|
|
648 |
def ALT(r1: Rexp, r2: Rexp) = ALTs(List(r1, r2)) |
|
649 |
def SEQ(r1: Rexp, r2: Rexp) = SEQs(List(r1, r2)) |
|
650 |
\end{lstlisting}
|
|
651 |
||
652 |
\noindent |
|
653 |
Since these are functions, everything of the form \texttt{ALT(r1, r2)}
|
|
654 |
will immediately be translated into the regular expression |
|
655 |
\texttt{ALTs(List(r1, r2))} (similarly for \texttt{SEQ}). Maybe even
|
|
656 |
more confusing is that Scala allows one to define |
|
657 |
\textit{extensions} that provide an even shorter notation for
|
|
658 |
\texttt{ALT} and \texttt{SEQ}, namely
|
|
659 |
||
660 |
\begin{center}
|
|
661 |
\begin{tabular}{lclcl}
|
|
662 |
\texttt{r1} $\sim$ \texttt{r2} & $\dn$ & \texttt{SEQ(r1, r2)} & $\dn$ & \texttt{SEQs(List(r1, r2))}\\
|
|
663 |
\texttt{r1} $|$ \texttt{r2} & $\dn$ & \texttt{ALT(r1, r2)} & $\dn$ & \texttt{ALTs(List(r1, r2))}\\
|
|
664 |
\end{tabular}
|
|
665 |
\end{center}
|
|
666 |
||
667 |
\noindent |
|
668 |
The right hand sides are the fully expanded definitions. |
|
669 |
The reason for this even shorter notation is that in the mathematical |
|
670 |
notation one often writes |
|
671 |
||
672 |
\begin{center}
|
|
673 |
\begin{tabular}{lcl}
|
|
674 |
$r_1 \;\cdot\; r_2$ & $\dn$ & $\prod\;[r_1, r_2]$\\ |
|
675 |
$r_1 + r_2$ & $\dn$ & $\sum\;[r_1, r_2]$ |
|
676 |
\end{tabular}
|
|
677 |
\end{center}
|
|
678 |
||
679 |
\noindent |
|
680 |
The first one is for binary \textit{sequence} regular expressions and
|
|
681 |
the second for binary \textit{alternative} regular expressions.
|
|
682 |
The regex in question in the shorthand notation is $(a + 1)\cdot a$, |
|
683 |
which is the same as |
|
684 |
||
685 |
\[ |
|
686 |
\prod\; [\Sigma\,[a, 1], a] |
|
687 |
\] |
|
688 |
||
689 |
\noindent |
|
690 |
or in Scala code |
|
691 |
||
692 |
\[ |
|
693 |
\texttt{(CHAR('a') | ONE)} \;\sim\; \texttt{CHAR('a')}
|
|
694 |
\] |
|
695 |
||
696 |
\noindent |
|
697 |
Using the mathematical notation, the definition of $\textit{der}$ is
|
|
698 |
given by the rules: |
|
699 |
||
700 |
\begin{center}
|
|
701 |
\begin{tabular}{llcl}
|
|
702 |
(1) & $\textit{der}\;c\;(\ZERO)$ & $\dn$ & $\ZERO$\\
|
|
703 |
(2) & $\textit{der}\;c\;(\ONE)$ & $\dn$ & $\ZERO$\\
|
|
704 |
(3) & $\textit{der}\;c\;(d)$ & $\dn$ & $\textit{if}\; c = d\;\textit{then} \;\ONE \; \textit{else} \;\ZERO$\\
|
|
705 |
(4) & $\textit{der}\;c\;(\sum\;[r_1,..,r_n])$ & $\dn$ & $\sum\;[\textit{der}\;c\;r_1,..,\textit{der}\;c\;r_n]$\\
|
|
706 |
(5) & $\textit{der}\;c\;(\prod\;[])$ & $\dn$ & $\ZERO$\\
|
|
707 |
(6) & $\textit{der}\;c\;(\prod\;r\!::\!rs)$ & $\dn$ & $\textit{if}\;\textit{nullable}(r)$\\
|
|
708 |
& & & $\textit{then}\;(\prod\;(\textit{der}\;c\;r)\!::\!rs) + (\textit{der}\;c\;(\prod rs))$\\
|
|
709 |
& & & $\textit{else}\;(\prod\;(\textit{der}\;c\;r)\!::\! rs)$\\
|
|
710 |
(7) & $\textit{der}\;c\;(r^*)$ & $\dn$ & $(\textit{der}\;c\;r)\cdot (r^*)$\\
|
|
711 |
\end{tabular}
|
|
712 |
\end{center}
|
|
713 |
||
| 218 | 714 |
|
715 |
||
| 480 | 716 |
\noindent |
717 |
Let's finally do the calculation for the derivative of the regular |
|
718 |
expression with respect to the letter $a$ (in red is in each line which |
|
719 |
regular expression is ana-lysed): |
|
| 218 | 720 |
|
| 480 | 721 |
\begin{center}
|
722 |
\begin{tabular}{cll}
|
|
723 |
& $\textit{der}(a, \textcolor{red}{(a + 1) \cdot a})$ & by (6) and since $a + 1$ is nullable\\
|
|
724 |
$\dn$ & $(\textit{der}(a, \textcolor{red}{a + 1})\cdot a) + \textit{der}(a, \,\prod\,[a])$ & by (4)\\
|
|
725 |
$\dn$ & $((\textit{der}(a, \textcolor{red}{a}) + \texttt{der}(a, \ONE))\cdot a) + \textit{der}(a, \,\prod\,[a])$& by (3)\\
|
|
726 |
$\dn$ & $((\ONE + \texttt{der}(a, \textcolor{red}{1}))\cdot a) + \textit{der}(a, \,\prod\,[a])$ & by (2)\\
|
|
727 |
$\dn$ & $((\ONE + \ZERO)\cdot a) + \textit{der}(a, \textcolor{red}{\prod\,[a]})$ & by (6) and $a$ not being nullable\\
|
|
728 |
$\dn$ & $((\ONE + \ZERO)\cdot a) + \prod\,[\texttt{der}(a, \textcolor{red}{a})]$ & by (3)\\
|
|
729 |
$\dn$ & $((\ONE + \ZERO)\cdot a) + \prod\,[\ONE]$ \\ |
|
730 |
\end{tabular}
|
|
731 |
\end{center}
|
|
732 |
||
733 |
\noindent |
|
734 |
Translating this result back into Scala code gives you |
|
735 |
||
736 |
\[ |
|
737 |
\texttt{ALT(\,} \underbrace{\texttt{(ONE | ZERO)} \sim \texttt{CHAR('a')}}_{(\textbf{1} + \textbf{0})\,\cdot\, a}\;,\;\underbrace{\texttt{SEQs(List(ONE))}}_{\prod\,[\textbf{1}]}\texttt{)}
|
|
738 |
\] |
|
739 |
||
740 |
||
| 6 | 741 |
|
742 |
\end{document}
|
|
743 |
||
| 68 | 744 |
|
|
425
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
745 |
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
746 |
For example given the regular expression $r = (a \cdot b) \cdot c$, the derivatives |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
747 |
w.r.t.~the characters $a$, $b$ and $c$ are |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
748 |
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
749 |
\begin{center}
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
750 |
\begin{tabular}{lcll}
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
751 |
$\textit{der}\;a\;r$ & $=$ & $(\ONE \cdot b)\cdot c$ & \quad($= r'$)\\
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
752 |
$\textit{der}\;b\;r$ & $=$ & $(\ZERO \cdot b)\cdot c$\\
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
753 |
$\textit{der}\;c\;r$ & $=$ & $(\ZERO \cdot b)\cdot c$
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
754 |
\end{tabular}
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
755 |
\end{center}
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
756 |
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
757 |
Let $r'$ stand for the first derivative, then taking the derivatives of $r'$ |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
758 |
w.r.t.~the characters $a$, $b$ and $c$ gives |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
759 |
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
760 |
\begin{center}
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
761 |
\begin{tabular}{lcll}
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
762 |
$\textit{der}\;a\;r'$ & $=$ & $((\ZERO \cdot b) + \ZERO)\cdot c$ \\
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
763 |
$\textit{der}\;b\;r'$ & $=$ & $((\ZERO \cdot b) + \ONE)\cdot c$ & \quad($= r''$)\\
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
764 |
$\textit{der}\;c\;r'$ & $=$ & $((\ZERO \cdot b) + \ZERO)\cdot c$
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
765 |
\end{tabular}
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
766 |
\end{center}
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
767 |
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
768 |
One more example: Let $r''$ stand for the second derivative above, |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
769 |
then taking the derivatives of $r''$ w.r.t.~the characters $a$, $b$ |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
770 |
and $c$ gives |
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
771 |
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
772 |
\begin{center}
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
773 |
\begin{tabular}{lcll}
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
774 |
$\textit{der}\;a\;r''$ & $=$ & $((\ZERO \cdot b) + \ZERO) \cdot c + \ZERO$ \\
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
775 |
$\textit{der}\;b\;r''$ & $=$ & $((\ZERO \cdot b) + \ZERO) \cdot c + \ZERO$\\
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
776 |
$\textit{der}\;c\;r''$ & $=$ & $((\ZERO \cdot b) + \ZERO) \cdot c + \ONE$ &
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
777 |
(is $\textit{nullable}$)
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
778 |
\end{tabular}
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
779 |
\end{center}
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
780 |
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
781 |
Note, the last derivative can match the empty string, that is it is \textit{nullable}.
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
782 |
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
783 |
|
|
6e990ae2c6a3
updated solutions and templates
Christian Urban <christian.urban@kcl.ac.uk>
parents:
423
diff
changeset
|
784 |
|
| 6 | 785 |
%%% Local Variables: |
786 |
%%% mode: latex |
|
787 |
%%% TeX-master: t |
|
788 |
%%% End: |