126
|
1 |
// Part 1 about the 3n+1 conceture
|
|
2 |
//=================================
|
|
3 |
|
|
4 |
|
|
5 |
//(1) Complete the collatz function below. It should
|
|
6 |
// recursively calculate the number of steps needed
|
|
7 |
// until the collatz series reaches the number 1.
|
|
8 |
// If needed you can use an auxilary function that
|
|
9 |
// performs the recursion. The function should expect
|
|
10 |
// arguments in the range of 1 to 1 Million.
|
|
11 |
|
|
12 |
|
|
13 |
def collatz(n: Long): Int =
|
|
14 |
if (n == 1) 1 else
|
|
15 |
if (n % 2 == 0) (1 + collatz(n / 2)) else
|
|
16 |
(1 + collatz(3 * n + 1))
|
|
17 |
|
|
18 |
|
|
19 |
//(2) Complete the collatz bound function below. It should
|
|
20 |
// calculuate how many steps are needed for each number
|
|
21 |
// from 1 upto a bound and then produce the maximum number of
|
|
22 |
// steps and the corresponding number that needs that many
|
|
23 |
// steps. You should expect bounds in the range of 1
|
|
24 |
// upto 1 million.
|
|
25 |
|
|
26 |
def collatz_max(bnd: Int): (Int, Int) = {
|
|
27 |
val all = for (i <- (1 to bnd).toList) yield collatz(i)
|
|
28 |
val max = all.max
|
|
29 |
(all.indexOf(max) + 1, max)
|
|
30 |
}
|
|
31 |
|
|
32 |
|
|
33 |
// some testing harness
|
|
34 |
/*
|
|
35 |
val bnds = List(2, 10, 100, 1000, 10000, 100000, 77000, 90000, 1000000, 5000000)
|
|
36 |
|
|
37 |
for (bnd <- bnds) {
|
|
38 |
val (max, steps) = collatz_max(bnd)
|
|
39 |
println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}")
|
|
40 |
}
|
|
41 |
*/
|
|
42 |
|
|
43 |
//val all = for (i <- (1 to 100000).toList) yield collatz1(i)
|
|
44 |
//println(all.sorted.reverse.take(10))
|
|
45 |
|
|
46 |
|
|
47 |
|