251
+ − 1
% !TEX program = xelatex
6
+ − 2
\documentclass{article}
62
+ − 3
\usepackage{../style}
78
+ − 4
\usepackage{../langs}
218
+ − 5
\usepackage{disclaimer}
+ − 6
\usepackage{tikz}
+ − 7
\usepackage{pgf}
+ − 8
\usepackage{pgfplots}
+ − 9
\usepackage{stackengine}
+ − 10
%% \usepackage{accents}
+ − 11
\newcommand\barbelow[1]{\stackunder[1.2pt]{#1}{\raisebox{-4mm}{\boldmath$\uparrow$}}}
+ − 12
325
+ − 13
%% change Console to scala.io.StdIn.readByte()
+ − 14
6
+ − 15
+ − 16
\begin{document}
+ − 17
307
+ − 18
\section*{Part 10 (Scala)}
6
+ − 19
306
+ − 20
\mbox{}\hfill\textit{``If there's one feature that makes Scala,}\\
+ − 21
\mbox{}\hfill\textit{`Scala', I would pick implicits.''}\smallskip\\
+ − 22
\mbox{}\hfill\textit{ --- Martin Odersky (creator of the Scala language)}\bigskip\medskip
278
+ − 23
+ − 24
+ − 25
\noindent
307
+ − 26
This part is about a small programming
+ − 27
language called brainf***. The part is worth 10\% and you need to
287
+ − 28
submit on \cwTEN{} at 4pm.\bigskip
218
+ − 29
+ − 30
\IMPORTANT{}
62
+ − 31
+ − 32
\noindent
218
+ − 33
Also note that the running time of each part will be restricted to a
+ − 34
maximum of 30 seconds on my laptop.
+ − 35
+ − 36
\DISCLAIMER{}
268
+ − 37
\newpage
86
+ − 38
230
+ − 39
\subsection*{Reference Implementation}
+ − 40
268
+ − 41
As usual, this Scala assignment comes with a reference implementation in
+ − 42
form of two \texttt{jar}-files. You can download them from KEATS. They
+ − 43
allow you to run any test cases on your own computer. For example you
+ − 44
can call Scala on the command line with the option \texttt{-cp bf.jar}
+ − 45
and then query any function from the \texttt{bf.scala} template file.
+ − 46
You have to prefix the calls with \texttt{CW10a} and \texttt{CW10b},
+ − 47
respectively. For example
230
+ − 48
+ − 49
+ − 50
\begin{lstlisting}[language={},xleftmargin=1mm,numbers=none,basicstyle=\ttfamily\small]
+ − 51
$ scala -cp bf.jar
+ − 52
scala> import CW10a._
292
+ − 53
scala> run(load_bff("sierpinski.bf")) ; ()
230
+ − 54
*
+ − 55
* *
+ − 56
* *
+ − 57
* * * *
+ − 58
* *
+ − 59
* * * *
+ − 60
* * * *
+ − 61
* * * * * * * *
+ − 62
* *
+ − 63
* * * *
+ − 64
* * * *
+ − 65
* * * * * * * *
+ − 66
* * * *
+ − 67
* * * * * * * *
+ − 68
* * * * * * * *
+ − 69
* * * * * * * * * * * * * * * *
+ − 70
* *
+ − 71
* * * *
+ − 72
* * * *
+ − 73
* * * * * * * *
+ − 74
* * * *
+ − 75
* * * * * * * *
+ − 76
* * * * * * * *
+ − 77
* * * * * * * * * * * * * * * *
+ − 78
* * * *
+ − 79
* * * * * * * *
+ − 80
* * * * * * * *
+ − 81
* * * * * * * * * * * * * * * *
+ − 82
* * * * * * * *
+ − 83
* * * * * * * * * * * * * * * *
+ − 84
* * * * * * * * * * * * * * * *
+ − 85
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+ − 86
\end{lstlisting}%$
+ − 87
268
+ − 88
\newpage
218
+ − 89
307
+ − 90
\subsection*{Part A (6 Marks)}
218
+ − 91
229
+ − 92
Coming from Java or C++, you might think Scala is a rather esoteric
218
+ − 93
programming language. But remember, some serious companies have built
+ − 94
their business on
+ − 95
Scala.\footnote{\url{https://en.wikipedia.org/wiki/Scala_(programming_language)\#Companies}}
230
+ − 96
I claim functional programming is not a fad. And there are far, far
+ − 97
more esoteric languages out there. One is called \emph{brainf***}. You
+ − 98
are asked in this part to implement an interpreter for
+ − 99
this language.
218
+ − 100
+ − 101
Urban M\"uller developed brainf*** in 1993. A close relative of this
+ − 102
language was already introduced in 1964 by Corado B\"ohm, an Italian
229
+ − 103
computer pioneer. The main feature of brainf*** is its minimalistic
+ − 104
set of instructions---just 8 instructions in total and all of which
+ − 105
are single characters. Despite the minimalism, this language has been
+ − 106
shown to be Turing complete\ldots{}if this doesn't ring any bell with
237
+ − 107
you: it roughly means that every(!) algorithm can, in principle,
229
+ − 108
be implemented in brainf***. It just takes a lot of determination and
+ − 109
quite a lot of memory resources. Some relatively sophisticated sample
+ − 110
programs in brainf*** are given in the file \texttt{bf.scala}, including
247
+ − 111
a brainf*** program for the Sierpinski triangle and the Mandelbrot set.
+ − 112
There seems to be even a dedicated Windows IDE for bf programs, though
+ − 113
I am not sure whether this is just an elaborate April fools' joke---judge
+ − 114
yourself:
+ − 115
+ − 116
\begin{center}
+ − 117
\url{https://www.microsoft.com/en-us/p/brainf-ck/9nblgggzhvq5}
268
+ − 118
\end{center} \bigskip
247
+ − 119
218
+ − 120
+ − 121
\noindent
+ − 122
As mentioned above, brainf*** has 8 single-character commands, namely
+ − 123
\texttt{'>'}, \texttt{'<'}, \texttt{'+'}, \texttt{'-'}, \texttt{'.'},
+ − 124
\texttt{','}, \texttt{'['} and \texttt{']'}. Every other character is
+ − 125
considered a comment. Brainf*** operates on memory cells containing
+ − 126
integers. For this it uses a single memory pointer that points at each
+ − 127
stage to one memory cell. This pointer can be moved forward by one
+ − 128
memory cell by using the command \texttt{'>'}, and backward by using
+ − 129
\texttt{'<'}. The commands \texttt{'+'} and \texttt{'-'} increase,
+ − 130
respectively decrease, by 1 the content of the memory cell to which
+ − 131
the memory pointer currently points to. The commands for input/output
+ − 132
are \texttt{','} and \texttt{'.'}. Output works by reading the content
+ − 133
of the memory cell to which the memory pointer points to and printing
+ − 134
it out as an ASCII character. Input works the other way, taking some
+ − 135
user input and storing it in the cell to which the memory pointer
+ − 136
points to. The commands \texttt{'['} and \texttt{']'} are looping
+ − 137
constructs. Everything in between \texttt{'['} and \texttt{']'} is
+ − 138
repeated until a counter (memory cell) reaches zero. A typical
+ − 139
program in brainf*** looks as follows:
+ − 140
+ − 141
\begin{center}
+ − 142
\begin{verbatim}
230
+ − 143
++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.++
+ − 144
+++++..+++.>>.<-.<.+++.------.--------.>>+.>++.
218
+ − 145
\end{verbatim}
+ − 146
\end{center}
+ − 147
+ − 148
\noindent
230
+ − 149
This one prints out Hello World\ldots{}obviously ;o)
218
+ − 150
+ − 151
\subsubsection*{Tasks (file bf.scala)}
109
+ − 152
+ − 153
\begin{itemize}
237
+ − 154
\item[(1)] Write a function that takes a filename (a string) as an argument
229
+ − 155
and requests the corresponding file from disk. It returns the
237
+ − 156
content of the file as a string. If the file does not exists,
229
+ − 157
the function should return the empty string.\\
+ − 158
\mbox{}\hfill[1 Mark]
+ − 159
+ − 160
\item[(2)] Brainf*** memory is represented by a \texttt{Map} from
218
+ − 161
integers to integers. The empty memory is represented by
+ − 162
\texttt{Map()}, that is nothing is stored in the
229
+ − 163
memory; \texttt{Map(0 -> 1, 2 -> 3)} stores \texttt{1} at
+ − 164
memory location \texttt{0}, and at \texttt{2} it stores \texttt{3}. The
218
+ − 165
convention is that if we query the memory at a location that is
+ − 166
\emph{not} defined in the \texttt{Map}, we return \texttt{0}. Write
268
+ − 167
a `safe-read' function, \texttt{sread}, that takes a memory (a \texttt{Map}) and
237
+ − 168
a memory pointer (an \texttt{Int}) as arguments, and `safely' reads the
218
+ − 169
corresponding memory location. If the \texttt{Map} is not defined at
+ − 170
the memory pointer, \texttt{sread} returns \texttt{0}.
+ − 171
+ − 172
Write another function \texttt{write}, which takes a memory, a
237
+ − 173
memory pointer and an integer value as arguments and updates the
+ − 174
\texttt{Map} with the value at the given memory location. As usual,
218
+ − 175
the \texttt{Map} is not updated `in-place' but a new map is created
237
+ − 176
with the same data, except the new value is stored at the given memory
218
+ − 177
pointer.\hfill[1 Mark]
+ − 178
229
+ − 179
\item[(3)] Write two functions, \texttt{jumpRight} and
237
+ − 180
\texttt{jumpLeft}, that are needed to implement the loop constructs
+ − 181
in brainf***. They take a program (a \texttt{String}) and a program
+ − 182
counter (an \texttt{Int}) as arguments and move right (respectively
218
+ − 183
left) in the string in order to find the \textbf{matching}
+ − 184
opening/closing bracket. For example, given the following program
+ − 185
with the program counter indicated by an arrow:
+ − 186
+ − 187
\begin{center}
+ − 188
\texttt{--[\barbelow{.}.+>--],>,++}
+ − 189
\end{center}
+ − 190
+ − 191
then the matching closing bracket is in 9th position (counting from 0) and
+ − 192
\texttt{jumpRight} is supposed to return the position just after this
109
+ − 193
218
+ − 194
\begin{center}
+ − 195
\texttt{--[..+>--]\barbelow{,}>,++}
+ − 196
\end{center}
+ − 197
237
+ − 198
meaning it jumps to after the loop. Similarly, if you are in 8th position,
218
+ − 199
then \texttt{jumpLeft} is supposed to jump to just after the opening
+ − 200
bracket (that is jumping to the beginning of the loop):
109
+ − 201
218
+ − 202
\begin{center}
+ − 203
\texttt{--[..+>-\barbelow{-}],>,++}
+ − 204
\qquad$\stackrel{\texttt{jumpLeft}}{\longrightarrow}$\qquad
+ − 205
\texttt{--[\barbelow{.}.+>--],>,++}
+ − 206
\end{center}
+ − 207
+ − 208
Unfortunately we have to take into account that there might be
+ − 209
other opening and closing brackets on the `way' to find the
+ − 210
matching bracket. For example in the brainf*** program
+ − 211
+ − 212
\begin{center}
+ − 213
\texttt{--[\barbelow{.}.[+>]--],>,++}
+ − 214
\end{center}
109
+ − 215
218
+ − 216
we do not want to return the index for the \texttt{'-'} in the 9th
+ − 217
position, but the program counter for \texttt{','} in 12th
+ − 218
position. The easiest to find out whether a bracket is matched is by
+ − 219
using levels (which are the third argument in \texttt{jumpLeft} and
+ − 220
\texttt{jumpLeft}). In case of \texttt{jumpRight} you increase the
+ − 221
level by one whenever you find an opening bracket and decrease by
+ − 222
one for a closing bracket. Then in \texttt{jumpRight} you are looking
+ − 223
for the closing bracket on level \texttt{0}. For \texttt{jumpLeft} you
+ − 224
do the opposite. In this way you can find \textbf{matching} brackets
+ − 225
in strings such as
+ − 226
+ − 227
\begin{center}
+ − 228
\texttt{--[\barbelow{.}.[[-]+>[.]]--],>,++}
+ − 229
\end{center}
109
+ − 230
218
+ − 231
for which \texttt{jumpRight} should produce the position:
+ − 232
+ − 233
\begin{center}
+ − 234
\texttt{--[..[[-]+>[.]]--]\barbelow{,}>,++}
+ − 235
\end{center}
+ − 236
+ − 237
It is also possible that the position returned by \texttt{jumpRight} or
+ − 238
\texttt{jumpLeft} is outside the string in cases where there are
+ − 239
no matching brackets. For example
+ − 240
+ − 241
\begin{center}
+ − 242
\texttt{--[\barbelow{.}.[[-]+>[.]]--,>,++}
+ − 243
\qquad$\stackrel{\texttt{jumpRight}}{\longrightarrow}$\qquad
+ − 244
\texttt{--[..[[-]+>[.]]-->,++\barbelow{\;\phantom{+}}}
+ − 245
\end{center}
229
+ − 246
\hfill[2 Marks]
109
+ − 247
+ − 248
230
+ − 249
\item[(4)] Write a recursive function \texttt{compute} that runs a
218
+ − 250
brainf*** program. It takes a program, a program counter, a memory
+ − 251
pointer and a memory as arguments. If the program counter is outside
230
+ − 252
the program string, the execution stops and \texttt{compute} returns the
218
+ − 253
memory. If the program counter is inside the string, it reads the
+ − 254
corresponding character and updates the program counter \texttt{pc},
+ − 255
memory pointer \texttt{mp} and memory \texttt{mem} according to the
+ − 256
rules shown in Figure~\ref{comms}. It then calls recursively
230
+ − 257
\texttt{compute} with the updated data. The most convenient way to
+ − 258
implement the brainf**k rules in Scala is to use pattern-matching
+ − 259
and to calculate a triple consisting of the updated \texttt{pc},
229
+ − 260
\texttt{mp} and \texttt{mem}.
218
+ − 261
230
+ − 262
Write another function \texttt{run} that calls \texttt{compute} with a
218
+ − 263
given brainfu** program and memory, and the program counter and memory pointer
230
+ − 264
set to~$0$. Like \texttt{compute}, it returns the memory after the execution
218
+ − 265
of the program finishes. You can test your brainf**k interpreter with the
229
+ − 266
Sierpinski triangle or the Hello world programs (they seem to be particularly
+ − 267
useful for debugging purposes), or have a look at
109
+ − 268
218
+ − 269
\begin{center}
+ − 270
\url{https://esolangs.org/wiki/Brainfuck}
+ − 271
\end{center}\hfill[2 Marks]
109
+ − 272
218
+ − 273
\begin{figure}[p]
+ − 274
\begin{center}
230
+ − 275
\begin{tabular}{|@{\hspace{0.5mm}}p{0.8cm}|l|}
218
+ − 276
\hline
+ − 277
\hfill\texttt{'>'} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+ − 278
$\bullet$ & $\texttt{pc} + 1$\\
+ − 279
$\bullet$ & $\texttt{mp} + 1$\\
+ − 280
$\bullet$ & \texttt{mem} unchanged
+ − 281
\end{tabular}\\\hline
+ − 282
\hfill\texttt{'<'} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+ − 283
$\bullet$ & $\texttt{pc} + 1$\\
+ − 284
$\bullet$ & $\texttt{mp} - 1$\\
+ − 285
$\bullet$ & \texttt{mem} unchanged
+ − 286
\end{tabular}\\\hline
+ − 287
\hfill\texttt{'+'} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+ − 288
$\bullet$ & $\texttt{pc} + 1$\\
+ − 289
$\bullet$ & $\texttt{mp}$ unchanged\\
+ − 290
$\bullet$ & \texttt{mem} updated with \texttt{mp -> mem(mp) + 1}\\
+ − 291
\end{tabular}\\\hline
+ − 292
\hfill\texttt{'-'} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+ − 293
$\bullet$ & $\texttt{pc} + 1$\\
+ − 294
$\bullet$ & $\texttt{mp}$ unchanged\\
+ − 295
$\bullet$ & \texttt{mem} updated with \texttt{mp -> mem(mp) - 1}\\
+ − 296
\end{tabular}\\\hline
+ − 297
\hfill\texttt{'.'} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+ − 298
$\bullet$ & $\texttt{pc} + 1$\\
+ − 299
$\bullet$ & $\texttt{mp}$ and \texttt{mem} unchanged\\
+ − 300
$\bullet$ & print out \,\texttt{mem(mp)} as a character\\
+ − 301
\end{tabular}\\\hline
+ − 302
\hfill\texttt{','} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+ − 303
$\bullet$ & $\texttt{pc} + 1$\\
+ − 304
$\bullet$ & $\texttt{mp}$ unchanged\\
+ − 305
$\bullet$ & \texttt{mem} updated with \texttt{mp -> \textrm{input}}\\
+ − 306
\multicolumn{2}{@{}l}{the input is given by \texttt{Console.in.read().toByte}}
+ − 307
\end{tabular}\\\hline
+ − 308
\hfill\texttt{'['} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+ − 309
\multicolumn{2}{@{}l}{if \texttt{mem(mp) == 0} then}\\
+ − 310
$\bullet$ & $\texttt{pc = jumpRight(prog, pc + 1, 0)}$\\
+ − 311
$\bullet$ & $\texttt{mp}$ and \texttt{mem} unchanged\medskip\\
+ − 312
\multicolumn{2}{@{}l}{otherwise if \texttt{mem(mp) != 0} then}\\
+ − 313
$\bullet$ & $\texttt{pc} + 1$\\
+ − 314
$\bullet$ & $\texttt{mp}$ and \texttt{mem} unchanged\\
+ − 315
\end{tabular}
+ − 316
\\\hline
+ − 317
\hfill\texttt{']'} & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+ − 318
\multicolumn{2}{@{}l}{if \texttt{mem(mp) != 0} then}\\
+ − 319
$\bullet$ & $\texttt{pc = jumpLeft(prog, pc - 1, 0)}$\\
+ − 320
$\bullet$ & $\texttt{mp}$ and \texttt{mem} unchanged\medskip\\
+ − 321
\multicolumn{2}{@{}l}{otherwise if \texttt{mem(mp) == 0} then}\\
+ − 322
$\bullet$ & $\texttt{pc} + 1$\\
+ − 323
$\bullet$ & $\texttt{mp}$ and \texttt{mem} unchanged\\
+ − 324
\end{tabular}\\\hline
+ − 325
any other char & \begin{tabular}[t]{@{}l@{\hspace{2mm}}l@{}}
+ − 326
$\bullet$ & $\texttt{pc} + 1$\\
+ − 327
$\bullet$ & \texttt{mp} and \texttt{mem} unchanged
+ − 328
\end{tabular}\\
+ − 329
\hline
+ − 330
\end{tabular}
+ − 331
\end{center}
+ − 332
\caption{The rules for how commands in the brainf*** language update the program counter \texttt{pc},
230
+ − 333
the memory pointer \texttt{mp} and the memory \texttt{mem}.\label{comms}}
218
+ − 334
\end{figure}
+ − 335
\end{itemize}\bigskip
+ − 336
268
+ − 337
%%\newpage
233
+ − 338
307
+ − 339
\subsection*{Part B (4 Marks)}
218
+ − 340
233
+ − 341
I am sure you agree while it is fun to look at bf-programs, like the
+ − 342
Sierpinski triangle or the Mandelbrot program, being interpreted, it
+ − 343
is much more fun to write a compiler for the bf-language.
+ − 344
+ − 345
+ − 346
\subsubsection*{Tasks (file bfc.scala)}
+ − 347
+ − 348
\begin{itemize}
+ − 349
\item[(5)] Compilers in general attempt to make programs run
+ − 350
faster by precomputing as much information as possible
+ − 351
before running the program. In our case we can precompute the
+ − 352
addresses where we need to jump at the beginning and end of
+ − 353
loops.
+ − 354
+ − 355
For this write a function \texttt{jtable} that precomputes the ``jump
+ − 356
table'' for a bf-program. This function takes a bf-program
+ − 357
as an argument and returns a \texttt{Map[Int, Int]}. The
237
+ − 358
purpose of this Map is to record the information, in cases
+ − 359
a pc-position points to a '\texttt{[}' or a '\texttt{]}',
+ − 360
to which pc-position do we need to jump next?
233
+ − 361
+ − 362
For example for the program
+ − 363
+ − 364
\begin{center}
+ − 365
\texttt{+++++[->++++++++++<]>--<+++[->>++++++++++}
+ − 366
\texttt{<<]>>++<<----------[+>.>.<+<]}
+ − 367
\end{center}
+ − 368
+ − 369
we obtain the Map (note the precise numbers might differ depending on white
+ − 370
spaces etc.~in the bf-program):
+ − 371
+ − 372
\begin{center}
+ − 373
\texttt{Map(69 -> 61, 5 -> 20, 60 -> 70, 27 -> 44, 43 -> 28, 19 -> 6)}
+ − 374
\end{center}
+ − 375
+ − 376
This Map states that for the '\texttt{[}' on position 5, we need to
+ − 377
jump to position 20, which is just after the corresponding '\texttt{]}'.
+ − 378
Similarly, for the '\texttt{]}' on position 19, we need to jump to
+ − 379
position 6, which is just after the '\texttt{[}' on position 5, and so
+ − 380
on. The idea is to not calculate this information each time
+ − 381
we hit a bracket, but just look up this information in the
+ − 382
\texttt{jtable}.
+ − 383
+ − 384
Then adapt the \texttt{compute} and \texttt{run} functions
+ − 385
from Part 1 in order to take advantage of the information
+ − 386
stored in the \texttt{jtable}. This means whenever \texttt{jumpLeft}
+ − 387
and \texttt{jumpRight} was called previously, you should look
+ − 388
up the jump address in the \texttt{jtable}. Feel free to reuse
+ − 389
the function \texttt{jumpLeft} and \texttt{jumpRight} for
+ − 390
calculating the \texttt{jtable}.\hfill{[1 Mark]}
+ − 391
237
+ − 392
\item[(6)] Compilers try to eliminate any ``dead'' code that could
+ − 393
slow down programs and also perform what is often called
+ − 394
\emph{peephole
+ − 395
optimisations}.\footnote{\url{https://en.wikipedia.org/wiki/Peephole_optimization}}
+ − 396
For the latter consider that it is difficult for compilers to
241
+ − 397
comprehend what is intended with whole programs, but they are very good
237
+ − 398
at finding out what small snippets of code do, and then try to
+ − 399
generate faster code for such snippets.
233
+ − 400
+ − 401
In our case, dead code is everything that is not a bf-command.
+ − 402
Therefore write a function \texttt{optimise} which deletes such
237
+ − 403
dead code from a bf-program. Moreover this function should replace every substring
233
+ − 404
of the form \pcode{[-]} by a new command \texttt{0}.
+ − 405
The idea is that the loop \pcode{[-]} just resets the
+ − 406
memory at the current location to 0. It is more efficient
237
+ − 407
to do this in a single step, rather than stepwise in a loop as in
233
+ − 408
the original bf-programs.
218
+ − 409
233
+ − 410
In the extended \texttt{compute3} and \texttt{run3} functions you should
+ − 411
implement this command by writing 0 to \pcode{mem(mp)}, that is use
+ − 412
\pcode{write(mem, mp, 0)} as the rule for the command \texttt{0}.
+ − 413
The easiest way to modify a string in this way is to use the regular
+ − 414
expression \pcode{"""[^<>+-.,\\[\\]]"""}, which recognises everything that is
+ − 415
not a bf-command. Similarly, the
237
+ − 416
regular expression \pcode{"""\\[-\\]"""} finds all occurrences of \pcode{[-]}. By using the Scala method \pcode{.replaceAll} you can replace substrings
+ − 417
with new strings.\\
+ − 418
\mbox{}\hfill{[1 Mark]}
233
+ − 419
+ − 420
\item[(7)] Finally, real compilers try to take advantage of CPUs which often
+ − 421
provide complex operations in hardware that can combine many smaller
+ − 422
instructions into a single faster instruction.
+ − 423
237
+ − 424
In our case we can optimise the several single increments performed at a
233
+ − 425
memory cell, for example \pcode{++++}, by a single ``increment by
+ − 426
4''. For this optimisation we just have to make sure these single
237
+ − 427
increments are all next to each other. Similar optimisations should apply
233
+ − 428
for the bf-commands \pcode{-}, \pcode{<} and
+ − 429
\pcode{>}, which can all be replaced by extended versions that take
+ − 430
the amount of the increment (decrement) into account. We will do
+ − 431
this by introducing two-character bf-commands. For example
+ − 432
+ − 433
\begin{center}
+ − 434
\begin{tabular}{l|l}
+ − 435
original bf-cmds & replacement\\
+ − 436
\hline
+ − 437
\pcode{+} & \pcode{+A}\\
+ − 438
\pcode{++} & \pcode{+B}\\
+ − 439
\pcode{+++} & \pcode{+C}\\
+ − 440
\ldots{} & \ldots{}\\
+ − 441
\pcode{+++....++} & \pcode{+Z}\\
+ − 442
\hspace{5mm}(these are 26 \pcode{+}'s)\\
+ − 443
\end{tabular}
+ − 444
\end{center}
+ − 445
+ − 446
237
+ − 447
If there are more
+ − 448
than 26 \pcode{+}'s in a row, then more than one ``two-character''
233
+ − 449
bf-commands need to be generated (the idea is that more than
+ − 450
26 copies of a single bf-command in a row is a rare occurrence in
237
+ − 451
actual bf-programs). Similar replacements apply
+ − 452
for \pcode{-}, \pcode{<} and \pcode{>}, but
+ − 453
all other bf-commands should be unaffected by this
233
+ − 454
change.
+ − 455
+ − 456
For this write a function \texttt{combine} which replaces sequences
+ − 457
of repeated increment and decrement commands by appropriate
237
+ − 458
two-character commands. In the functions \pcode{compute4} and
233
+ − 459
\pcode{run4}, the ``combine'' and the optimisation from (6) should
+ − 460
be performed. Make sure that when a two-character bf-command is
+ − 461
encountered you need to increase the \pcode{pc}-counter by two in
237
+ − 462
order to progress to the next command. For example
233
+ − 463
+ − 464
\begin{center}
+ − 465
\pcode{combine(optimise(load_bff("benchmark.bf")))}
+ − 466
\end{center}
+ − 467
+ − 468
generates the improved program
+ − 469
+ − 470
\begin{center}
+ − 471
\pcode{>A+B[<A+M>A-A]<A[[}\hspace{3mm}\ldots{}
+ − 472
\end{center}
+ − 473
+ − 474
for the original benchmark program
+ − 475
+ − 476
\begin{center}
+ − 477
\pcode{>++[<+++++++++++++>-]<[[}\hspace{3mm}\ldots
+ − 478
\end{center}
+ − 479
241
+ − 480
As you can see, the compiler bets on saving a lot of time on the
+ − 481
\pcode{+B} and \pcode{+M} steps so that the optimisations is
233
+ − 482
worthwhile overall (of course for the \pcode{>A}'s and so on, the compiler incurs a
+ − 483
penalty). Luckily, after you have performed all
+ − 484
optimisations in (5) - (7), you can expect that the
234
+ − 485
\pcode{benchmark.bf} program runs four to five times faster.
+ − 486
You can also test whether your compiler produces the correct result
+ − 487
by for example testing
+ − 488
+ − 489
\begin{center}
+ − 490
\pcode{run(load_bff("sierpinski.bf")) == run4(load_bff("sierpinski.bf"))}
+ − 491
\end{center}
+ − 492
+ − 493
which should return true for all the different compiler stages. \\
+ − 494
\mbox{}\hfill{[2 Marks]}
233
+ − 495
\end{itemize}
6
+ − 496
+ − 497
\end{document}
+ − 498
68
+ − 499
6
+ − 500
%%% Local Variables:
+ − 501
%%% mode: latex
+ − 502
%%% TeX-master: t
+ − 503
%%% End: