127
|
1 |
// Part 1 about the 3n+1 conjecture
|
|
2 |
//==================================
|
167
|
3 |
|
281
|
4 |
// generate jar with
|
|
5 |
// > scala -d collatz.jar collatz.scala
|
126
|
6 |
|
281
|
7 |
object CW6a {
|
|
8 |
|
126
|
9 |
|
127
|
10 |
def collatz(n: Long): Long =
|
199
|
11 |
if (n == 1) 0 else
|
127
|
12 |
if (n % 2 == 0) 1 + collatz(n / 2) else
|
|
13 |
1 + collatz(3 * n + 1)
|
126
|
14 |
|
|
15 |
|
127
|
16 |
def collatz_max(bnd: Long): (Long, Long) = {
|
199
|
17 |
val all = for (i <- (1L to bnd)) yield (collatz(i), i)
|
|
18 |
all.maxBy(_._1)
|
126
|
19 |
}
|
|
20 |
|
281
|
21 |
|
199
|
22 |
/* some test cases
|
|
23 |
val bnds = List(10, 100, 1000, 10000, 100000, 1000000)
|
126
|
24 |
|
199
|
25 |
for (bnd <- bnds) {
|
|
26 |
val (steps, max) = collatz_max(bnd)
|
|
27 |
println(s"In the range of 1 - ${bnd} the number ${max} needs the maximum steps of ${steps}")
|
127
|
28 |
}
|
126
|
29 |
|
199
|
30 |
*/
|
171
|
31 |
|
281
|
32 |
|
|
33 |
}
|
|
34 |
|
|
35 |
|
|
36 |
|