| 238 |      1 | // Scala Lecture 5
 | 
| 222 |      2 | //=================
 | 
|  |      3 | 
 | 
| 491 |      4 | def foo(n: Int) = ???
 | 
| 478 |      5 | 
 | 
| 491 |      6 | fop(10)
 | 
| 478 |      7 | 
 | 
| 491 |      8 | List.fill(1)(100)
 | 
|  |      9 | // (Immutable) OOP
 | 
| 478 |     10 | 
 | 
| 326 |     11 | // Object Oriented Programming in Scala
 | 
|  |     12 | // =====================================
 | 
| 238 |     13 | 
 | 
| 329 |     14 | 
 | 
|  |     15 | abstract class Animal 
 | 
| 326 |     16 | case class Bird(name: String) extends Animal {
 | 
|  |     17 |    override def toString = name
 | 
|  |     18 | }
 | 
|  |     19 | case class Mammal(name: String) extends Animal
 | 
|  |     20 | case class Reptile(name: String) extends Animal
 | 
|  |     21 | 
 | 
|  |     22 | Mammal("Zebra")
 | 
|  |     23 | println(Mammal("Zebra"))
 | 
|  |     24 | println(Mammal("Zebra").toString)
 | 
|  |     25 | 
 | 
| 238 |     26 | 
 | 
| 326 |     27 | Bird("Sparrow")
 | 
|  |     28 | println(Bird("Sparrow"))
 | 
|  |     29 | println(Bird("Sparrow").toString)
 | 
|  |     30 | 
 | 
| 383 |     31 | Bird("Sparrow").copy(name = "House Sparrow")
 | 
|  |     32 | 
 | 
|  |     33 | def group(a : Animal) = a match {
 | 
|  |     34 |   case Bird(_) => "It's a bird"
 | 
|  |     35 |   case Mammal(_) => "It's a mammal"
 | 
|  |     36 | }
 | 
|  |     37 | 
 | 
| 326 |     38 | 
 | 
|  |     39 | // There is a very convenient short-hand notation
 | 
|  |     40 | // for constructors:
 | 
|  |     41 | 
 | 
|  |     42 | class Fraction(x: Int, y: Int) {
 | 
|  |     43 |   def numer = x
 | 
|  |     44 |   def denom = y
 | 
| 238 |     45 | }
 | 
|  |     46 | 
 | 
| 478 |     47 | val half = Fraction(1, 2)
 | 
| 383 |     48 | half.numer
 | 
| 326 |     49 | 
 | 
| 478 |     50 | // does not work with "vanilla" classes
 | 
|  |     51 | half match {
 | 
|  |     52 |   case Fraction(x, y) => x / y
 | 
|  |     53 | }
 | 
|  |     54 | 
 | 
|  |     55 | 
 | 
| 326 |     56 | case class Fraction(numer: Int, denom: Int)
 | 
|  |     57 | 
 | 
|  |     58 | val half = Fraction(1, 2)
 | 
|  |     59 | 
 | 
| 383 |     60 | half.numer
 | 
| 326 |     61 | half.denom
 | 
|  |     62 | 
 | 
| 478 |     63 | // works with case classes
 | 
|  |     64 | half match {
 | 
|  |     65 |   case Fraction(x, y) => x / y
 | 
|  |     66 | }
 | 
|  |     67 | 
 | 
| 326 |     68 | 
 | 
|  |     69 | 
 | 
|  |     70 | // All is public by default....so no public is needed.
 | 
|  |     71 | // You can have the usual restrictions about private 
 | 
|  |     72 | // values and methods, if you are MUTABLE !!!
 | 
|  |     73 | 
 | 
|  |     74 | case class BankAccount(init: Int) {
 | 
|  |     75 | 
 | 
|  |     76 |   private var balance = init
 | 
|  |     77 | 
 | 
|  |     78 |   def deposit(amount: Int): Unit = {
 | 
|  |     79 |     if (amount > 0) balance = balance + amount
 | 
|  |     80 |   }
 | 
| 238 |     81 | 
 | 
| 326 |     82 |   def withdraw(amount: Int): Int =
 | 
|  |     83 |     if (0 < amount && amount <= balance) {
 | 
|  |     84 |       balance = balance - amount
 | 
|  |     85 |       balance
 | 
|  |     86 |     } else throw new Error("insufficient funds")
 | 
| 238 |     87 | }
 | 
|  |     88 | 
 | 
| 326 |     89 | // BUT since we are completely IMMUTABLE, this is 
 | 
| 383 |     90 | // virtually of no concern to us.
 | 
| 326 |     91 | 
 | 
|  |     92 | 
 | 
|  |     93 | 
 | 
|  |     94 | // another example about Fractions
 | 
|  |     95 | import scala.language.implicitConversions
 | 
|  |     96 | import scala.language.reflectiveCalls
 | 
|  |     97 | 
 | 
|  |     98 | case class Fraction(numer: Int, denom: Int) {
 | 
|  |     99 |   override def toString = numer.toString + "/" + denom.toString
 | 
|  |    100 | 
 | 
| 383 |    101 |   def +(other: Fraction) = 
 | 
|  |    102 |     Fraction(numer * other.denom + other.numer * denom, 
 | 
|  |    103 |              denom * other.denom)
 | 
| 478 |    104 |   def *(other: Fraction) = 
 | 
|  |    105 |     Fraction(numer * other.numer, denom * other.denom)
 | 
| 326 |    106 |  }
 | 
|  |    107 | 
 | 
| 478 |    108 | given Conversion[Int, Fraction] = (x => Fraction(x, 1))
 | 
| 326 |    109 | 
 | 
|  |    110 | val half = Fraction(1, 2)
 | 
|  |    111 | val third = Fraction (1, 3)
 | 
|  |    112 | 
 | 
|  |    113 | half + third
 | 
| 383 |    114 | half * third
 | 
| 326 |    115 | 
 | 
| 383 |    116 | 1 + half
 | 
|  |    117 | 
 | 
|  |    118 | 
 | 
| 326 |    119 | 
 | 
|  |    120 | 
 | 
|  |    121 | // DFAs in Scala  
 | 
|  |    122 | //===============
 | 
|  |    123 | import scala.util.Try
 | 
| 238 |    124 | 
 | 
| 326 |    125 | 
 | 
|  |    126 | // A is the state type
 | 
|  |    127 | // C is the input (usually characters)
 | 
|  |    128 | 
 | 
|  |    129 | case class DFA[A, C](start: A,              // starting state
 | 
|  |    130 |                      delta: (A, C) => A,    // transition function
 | 
|  |    131 |                      fins:  A => Boolean) { // final states (Set)
 | 
|  |    132 | 
 | 
|  |    133 |   def deltas(q: A, s: List[C]) : A = s match {
 | 
|  |    134 |     case Nil => q
 | 
|  |    135 |     case c::cs => deltas(delta(q, c), cs)
 | 
|  |    136 |   }
 | 
|  |    137 | 
 | 
|  |    138 |   def accepts(s: List[C]) : Boolean = 
 | 
| 383 |    139 |     Try(fins(deltas(start, s))).getOrElse(false)
 | 
| 238 |    140 | }
 | 
|  |    141 | 
 | 
| 326 |    142 | // the example shown in the handout 
 | 
|  |    143 | abstract class State
 | 
|  |    144 | case object Q0 extends State
 | 
|  |    145 | case object Q1 extends State
 | 
|  |    146 | case object Q2 extends State
 | 
|  |    147 | case object Q3 extends State
 | 
|  |    148 | case object Q4 extends State
 | 
| 238 |    149 | 
 | 
| 326 |    150 | val delta : (State, Char) => State = 
 | 
|  |    151 |   { case (Q0, 'a') => Q1
 | 
|  |    152 |     case (Q0, 'b') => Q2
 | 
|  |    153 |     case (Q1, 'a') => Q4
 | 
|  |    154 |     case (Q1, 'b') => Q2
 | 
|  |    155 |     case (Q2, 'a') => Q3
 | 
|  |    156 |     case (Q2, 'b') => Q2
 | 
|  |    157 |     case (Q3, 'a') => Q4
 | 
|  |    158 |     case (Q3, 'b') => Q0
 | 
|  |    159 |     case (Q4, 'a') => Q4
 | 
|  |    160 |     case (Q4, 'b') => Q4 
 | 
|  |    161 |     case _ => throw new Exception("Undefined") }
 | 
|  |    162 | 
 | 
|  |    163 | val dfa = DFA(Q0, delta, Set[State](Q4))
 | 
|  |    164 | 
 | 
|  |    165 | dfa.accepts("abaaa".toList)     // true
 | 
|  |    166 | dfa.accepts("bbabaab".toList)   // true
 | 
|  |    167 | dfa.accepts("baba".toList)      // false
 | 
|  |    168 | dfa.accepts("abc".toList)       // false
 | 
|  |    169 | 
 | 
| 238 |    170 | 
 | 
| 326 |    171 | // NFAs (Nondeterministic Finite Automata)
 | 
|  |    172 | 
 | 
|  |    173 | 
 | 
|  |    174 | case class NFA[A, C](starts: Set[A],          // starting states
 | 
|  |    175 |                      delta: (A, C) => Set[A], // transition function
 | 
|  |    176 |                      fins:  A => Boolean) {   // final states 
 | 
|  |    177 | 
 | 
|  |    178 |   // given a state and a character, what is the set of 
 | 
|  |    179 |   // next states? if there is none => empty set
 | 
|  |    180 |   def next(q: A, c: C) : Set[A] = 
 | 
| 383 |    181 |     Try(delta(q, c)).getOrElse(Set[A]()) 
 | 
| 326 |    182 | 
 | 
|  |    183 |   def nexts(qs: Set[A], c: C) : Set[A] =
 | 
|  |    184 |     qs.flatMap(next(_, c))
 | 
|  |    185 | 
 | 
|  |    186 |   // depth-first version of accepts
 | 
|  |    187 |   def search(q: A, s: List[C]) : Boolean = s match {
 | 
|  |    188 |     case Nil => fins(q)
 | 
|  |    189 |     case c::cs => next(q, c).exists(search(_, cs))
 | 
|  |    190 |   }
 | 
|  |    191 | 
 | 
|  |    192 |   def accepts(s: List[C]) : Boolean =
 | 
|  |    193 |     starts.exists(search(_, s))
 | 
| 238 |    194 | }
 | 
|  |    195 | 
 | 
|  |    196 | 
 | 
| 326 |    197 | 
 | 
|  |    198 | // NFA examples
 | 
|  |    199 | 
 | 
|  |    200 | val nfa_trans1 : (State, Char) => Set[State] = 
 | 
|  |    201 |   { case (Q0, 'a') => Set(Q0, Q1) 
 | 
|  |    202 |     case (Q0, 'b') => Set(Q2) 
 | 
|  |    203 |     case (Q1, 'a') => Set(Q1) 
 | 
|  |    204 |     case (Q2, 'b') => Set(Q2) }
 | 
| 238 |    205 | 
 | 
| 326 |    206 | val nfa = NFA(Set[State](Q0), nfa_trans1, Set[State](Q2))
 | 
| 238 |    207 | 
 | 
| 326 |    208 | nfa.accepts("aa".toList)             // false
 | 
|  |    209 | nfa.accepts("aaaaa".toList)          // false
 | 
|  |    210 | nfa.accepts("aaaaab".toList)         // true
 | 
|  |    211 | nfa.accepts("aaaaabbb".toList)       // true
 | 
|  |    212 | nfa.accepts("aaaaabbbaaa".toList)    // false
 | 
|  |    213 | nfa.accepts("ac".toList)             // false
 | 
| 222 |    214 | 
 | 
| 238 |    215 | 
 | 
| 326 |    216 | // Q: Why the kerfuffle about the polymorphic types in DFAs/NFAs?
 | 
|  |    217 | // A: Subset construction. Here the state type for the DFA is
 | 
|  |    218 | //    sets of states.
 | 
| 238 |    219 | 
 | 
| 383 |    220 | 
 | 
| 326 |    221 | def subset[A, C](nfa: NFA[A, C]) : DFA[Set[A], C] = {
 | 
|  |    222 |   DFA(nfa.starts, 
 | 
|  |    223 |       { case (qs, c) => nfa.nexts(qs, c) }, 
 | 
|  |    224 |       _.exists(nfa.fins))
 | 
| 238 |    225 | }
 | 
|  |    226 | 
 | 
| 326 |    227 | subset(nfa).accepts("aa".toList)             // false
 | 
|  |    228 | subset(nfa).accepts("aaaaa".toList)          // false
 | 
|  |    229 | subset(nfa).accepts("aaaaab".toList)         // true
 | 
|  |    230 | subset(nfa).accepts("aaaaabbb".toList)       // true
 | 
|  |    231 | subset(nfa).accepts("aaaaabbbaaa".toList)    // false
 | 
|  |    232 | subset(nfa).accepts("ac".toList)             // false
 | 
| 238 |    233 | 
 | 
| 384 |    234 | 
 | 
| 452 |    235 | // Laziness with style
 | 
|  |    236 | //=====================
 | 
|  |    237 | 
 | 
|  |    238 | // The concept of lazy evaluation doesn’t really 
 | 
|  |    239 | // exist in non-functional languages. C-like languages
 | 
|  |    240 | // are (sort of) strict. To see the difference, consider
 | 
|  |    241 | 
 | 
|  |    242 | def square(x: Int) = x * x
 | 
|  |    243 | 
 | 
|  |    244 | square(42 + 8)
 | 
|  |    245 | 
 | 
|  |    246 | // This is called "strict evaluation".
 | 
|  |    247 | 
 | 
| 467 |    248 | // In contrast say we have a pretty expensive operation:
 | 
| 452 |    249 | 
 | 
|  |    250 | def peop(n: BigInt): Boolean = peop(n + 1) 
 | 
|  |    251 | 
 | 
|  |    252 | val a = "foo"
 | 
|  |    253 | val b = "foo"
 | 
|  |    254 | 
 | 
|  |    255 | if (a == b || peop(0)) println("true") else println("false")
 | 
|  |    256 | 
 | 
|  |    257 | // This is called "lazy evaluation":
 | 
|  |    258 | // you delay compuation until it is really 
 | 
|  |    259 | // needed. Once calculated though, the result
 | 
|  |    260 | // does not need to be re-calculated.
 | 
|  |    261 | 
 | 
|  |    262 | // A useful example is
 | 
|  |    263 | 
 | 
|  |    264 | def time_needed[T](i: Int, code: => T) = {
 | 
|  |    265 |   val start = System.nanoTime()
 | 
|  |    266 |   for (j <- 1 to i) code
 | 
|  |    267 |   val end = System.nanoTime()
 | 
|  |    268 |   f"${(end - start) / (i * 1.0e9)}%.6f secs"
 | 
|  |    269 | }
 | 
|  |    270 | 
 | 
|  |    271 | // A slightly less obvious example: Prime Numbers.
 | 
|  |    272 | // (I do not care how many) primes: 2, 3, 5, 7, 9, 11, 13 ....
 | 
|  |    273 | 
 | 
|  |    274 | def generatePrimes (s: LazyList[Int]): LazyList[Int] =
 | 
|  |    275 |   s.head #:: generatePrimes(s.tail.filter(_ % s.head != 0))
 | 
|  |    276 | 
 | 
|  |    277 | val primes = generatePrimes(LazyList.from(2))
 | 
|  |    278 | 
 | 
|  |    279 | // the first 10 primes
 | 
|  |    280 | primes.take(100).toList
 | 
|  |    281 | 
 | 
|  |    282 | time_needed(1, primes.filter(_ > 100).take(3000).toList)
 | 
|  |    283 | time_needed(1, primes.filter(_ > 100).take(3000).toList)
 | 
|  |    284 | 
 | 
|  |    285 | // A Stream (LazyList) of successive numbers:
 | 
|  |    286 | 
 | 
|  |    287 | LazyList.from(2).take(10)
 | 
|  |    288 | LazyList.from(2).take(10).force
 | 
|  |    289 | 
 | 
|  |    290 | // An Iterative version of the Fibonacci numbers
 | 
|  |    291 | def fibIter(a: BigInt, b: BigInt): LazyList[BigInt] =
 | 
|  |    292 |   a #:: fibIter(b, a + b)
 | 
|  |    293 | 
 | 
|  |    294 | 
 | 
|  |    295 | fibIter(1, 1).take(10).force
 | 
|  |    296 | fibIter(8, 13).take(10).force
 | 
|  |    297 | 
 | 
|  |    298 | fibIter(1, 1).drop(10000).take(1)
 | 
|  |    299 | fibIter(1, 1).drop(10000).take(1).force
 | 
|  |    300 | 
 | 
|  |    301 | 
 | 
|  |    302 | // LazyLists are good for testing
 | 
|  |    303 | 
 | 
|  |    304 | 
 | 
|  |    305 | // Regular expressions - the power of DSLs in Scala
 | 
|  |    306 | //                                     and Laziness
 | 
|  |    307 | //==================================================
 | 
|  |    308 | 
 | 
|  |    309 | abstract class Rexp
 | 
|  |    310 | case object ZERO extends Rexp                     // nothing
 | 
|  |    311 | case object ONE extends Rexp                      // the empty string
 | 
|  |    312 | case class CHAR(c: Char) extends Rexp             // a character c
 | 
|  |    313 | case class ALT(r1: Rexp, r2: Rexp) extends Rexp   // alternative  r1 + r2
 | 
|  |    314 | case class SEQ(r1: Rexp, r2: Rexp) extends Rexp   // sequence     r1 . r2  
 | 
|  |    315 | case class STAR(r: Rexp) extends Rexp             // star         r*
 | 
|  |    316 | 
 | 
|  |    317 | 
 | 
|  |    318 | // some convenience for typing in regular expressions
 | 
|  |    319 | import scala.language.implicitConversions    
 | 
|  |    320 | import scala.language.reflectiveCalls 
 | 
|  |    321 | 
 | 
|  |    322 | def charlist2rexp(s: List[Char]): Rexp = s match {
 | 
|  |    323 |   case Nil => ONE
 | 
|  |    324 |   case c::Nil => CHAR(c)
 | 
|  |    325 |   case c::s => SEQ(CHAR(c), charlist2rexp(s))
 | 
|  |    326 | }
 | 
|  |    327 | 
 | 
| 478 |    328 | given Conversion[String, Rexp] = (s => charlist2rexp(s.toList))
 | 
|  |    329 | 
 | 
|  |    330 | extension (r: Rexp) {
 | 
| 452 |    331 |   def | (s: Rexp) = ALT(r, s)
 | 
|  |    332 |   def % = STAR(r)
 | 
|  |    333 |   def ~ (s: Rexp) = SEQ(r, s)
 | 
|  |    334 | }
 | 
|  |    335 | 
 | 
|  |    336 | 
 | 
|  |    337 | 
 | 
|  |    338 | //example regular expressions
 | 
|  |    339 | val digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
 | 
|  |    340 | val sign = "+" | "-" | ""
 | 
|  |    341 | val number = sign ~ digit ~ digit.% 
 | 
|  |    342 | 
 | 
|  |    343 | // Task: enumerate exhaustively regular expressions
 | 
|  |    344 | // starting from small ones towards bigger ones.
 | 
|  |    345 | 
 | 
|  |    346 | // 1st idea: enumerate them all in a Set
 | 
|  |    347 | // up to a level
 | 
|  |    348 | 
 | 
|  |    349 | def enuml(l: Int, s: String) : Set[Rexp] = l match {
 | 
| 491 |    350 |   case 0 => Set(ZERO, ONE) ++ s.map(CHAR(_)).toSet
 | 
| 452 |    351 |   case n =>  
 | 
|  |    352 |     val rs = enuml(n - 1, s)
 | 
|  |    353 |     rs ++
 | 
|  |    354 |     (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) ++
 | 
|  |    355 |     (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) ++
 | 
|  |    356 |     (for (r1 <- rs) yield STAR(r1))
 | 
|  |    357 | }
 | 
|  |    358 | 
 | 
|  |    359 | enuml(1, "a")
 | 
|  |    360 | enuml(1, "a").size
 | 
|  |    361 | enuml(2, "a").size
 | 
| 467 |    362 | enuml(3, "a").size 
 | 
|  |    363 | enuml(4, "a").size // out of heap space
 | 
| 452 |    364 | 
 | 
|  |    365 | 
 | 
|  |    366 | def enum(rs: LazyList[Rexp]) : LazyList[Rexp] = 
 | 
|  |    367 |   rs #::: enum( (for (r1 <- rs; r2 <- rs) yield ALT(r1, r2)) #:::
 | 
|  |    368 |                 (for (r1 <- rs; r2 <- rs) yield SEQ(r1, r2)) #:::
 | 
|  |    369 |                 (for (r1 <- rs) yield STAR(r1)) )
 | 
|  |    370 | 
 | 
|  |    371 | 
 | 
|  |    372 | enum(LazyList(ZERO, ONE, CHAR('a'), CHAR('b'))).take(200).force
 | 
| 467 |    373 | enum(LazyList(ZERO, ONE, CHAR('a'), CHAR('b'))).take(5_000_000).force // out of memory
 | 
| 452 |    374 | 
 | 
|  |    375 | 
 | 
|  |    376 | def depth(r: Rexp) : Int = r match {
 | 
|  |    377 |   case ZERO => 0
 | 
|  |    378 |   case ONE => 0
 | 
|  |    379 |   case CHAR(_) => 0
 | 
|  |    380 |   case ALT(r1, r2) => Math.max(depth(r1), depth(r2)) + 1
 | 
|  |    381 |   case SEQ(r1, r2) => Math.max(depth(r1), depth(r2)) + 1 
 | 
|  |    382 |   case STAR(r1) => depth(r1) + 1
 | 
|  |    383 | }
 | 
|  |    384 | 
 | 
|  |    385 | 
 | 
|  |    386 | val is = 
 | 
|  |    387 |   (enum(LazyList(ZERO, ONE, CHAR('a'), CHAR('b')))
 | 
|  |    388 |     .dropWhile(depth(_) < 3)
 | 
|  |    389 |     .take(10).foreach(println))
 | 
|  |    390 | 
 | 
|  |    391 | 
 | 
| 384 |    392 | 
 | 
|  |    393 | 
 | 
|  |    394 | 
 | 
|  |    395 | 
 | 
|  |    396 | 
 | 
|  |    397 | 
 | 
|  |    398 | 
 | 
|  |    399 | 
 | 
|  |    400 | 
 | 
| 238 |    401 | 
 | 
| 222 |    402 | 
 | 
| 240 |    403 | // The End ... Almost Christmas
 | 
| 238 |    404 | //===============================
 | 
|  |    405 | 
 | 
|  |    406 | // I hope you had fun!
 | 
|  |    407 | 
 | 
|  |    408 | // A function should do one thing, and only one thing.
 | 
|  |    409 | 
 | 
|  |    410 | // Make your variables immutable, unless there's a good 
 | 
| 326 |    411 | // reason not to. Usually there is not.
 | 
| 238 |    412 | 
 | 
| 326 |    413 | // I did it once, but this is actually not a good reason:
 | 
| 240 |    414 | // generating new labels:
 | 
|  |    415 | 
 | 
| 238 |    416 | var counter = -1
 | 
| 222 |    417 | 
 | 
| 238 |    418 | def Fresh(x: String) = {
 | 
|  |    419 |   counter += 1
 | 
|  |    420 |   x ++ "_" ++ counter.toString()
 | 
|  |    421 | }
 | 
|  |    422 | 
 | 
|  |    423 | Fresh("x")
 | 
|  |    424 | Fresh("x")
 | 
|  |    425 | 
 | 
|  |    426 | 
 | 
|  |    427 | 
 | 
| 326 |    428 | // I think you can be productive on Day 1, but the 
 | 
|  |    429 | // language is deep.
 | 
| 238 |    430 | //
 | 
|  |    431 | // http://scalapuzzlers.com
 | 
|  |    432 | //
 | 
|  |    433 | // http://www.latkin.org/blog/2017/05/02/when-the-scala-compiler-doesnt-help/
 | 
|  |    434 | 
 | 
| 328 |    435 | val two   = 0.2
 | 
|  |    436 | val one   = 0.1
 | 
|  |    437 | val eight = 0.8
 | 
|  |    438 | val six   = 0.6
 | 
|  |    439 | 
 | 
|  |    440 | two - one == one
 | 
|  |    441 | eight - six == two
 | 
| 329 |    442 | eight - six
 | 
| 328 |    443 | 
 | 
|  |    444 | 
 | 
| 329 |    445 | // problems about equality and type-errors
 | 
| 328 |    446 | 
 | 
| 329 |    447 | List(1, 2, 3).contains("your cup")   // should not compile, but retruns false
 | 
|  |    448 | 
 | 
|  |    449 | List(1, 2, 3) == Vector(1, 2, 3)     // again should not compile, but returns true
 | 
| 326 |    450 | 
 | 
| 238 |    451 | 
 | 
| 326 |    452 | 
 |