124
|
1 |
import java.awt.Color
|
|
2 |
import java.awt.Dimension
|
|
3 |
import java.awt.Graphics
|
|
4 |
import java.awt.Graphics2D
|
|
5 |
import java.awt.image.BufferedImage
|
|
6 |
import javax.swing.JFrame
|
|
7 |
import javax.swing.JPanel
|
|
8 |
import javax.swing.WindowConstants
|
|
9 |
|
|
10 |
// complex numbers
|
|
11 |
case class Complex(val a: Double, val b: Double) {
|
143
|
12 |
// represents the complex number a + b * i
|
124
|
13 |
def +(that: Complex) = Complex(this.a + that.a, this.b + that.b)
|
|
14 |
def -(that: Complex) = Complex(this.a - that.a, this.b - that.b)
|
|
15 |
def *(that: Complex) = Complex(this.a * that.a - this.b * that.b,
|
|
16 |
this.a * that.b + that.a * this.b)
|
|
17 |
def *(that: Double) = Complex(this.a * that, this.b * that)
|
|
18 |
def abs() = Math.sqrt(this.a * this.a + this.b * this.b)
|
|
19 |
}
|
|
20 |
|
|
21 |
// some customn colours
|
|
22 |
val colours = List(
|
|
23 |
new Color(66, 30, 15), new Color(25, 7, 26),
|
|
24 |
new Color(9, 1, 47), new Color(4, 4, 73),
|
|
25 |
new Color(0, 7, 100), new Color(12, 44, 138),
|
|
26 |
new Color(24, 82, 177), new Color(57, 125, 209),
|
|
27 |
new Color(134, 181, 229), new Color(211, 236, 248),
|
|
28 |
new Color(241, 233, 191), new Color(248, 201, 95),
|
|
29 |
new Color(255, 170, 0), new Color(204, 128, 0),
|
|
30 |
new Color(153, 87, 0), new Color(106, 52, 3))
|
|
31 |
|
|
32 |
// the viewer panel
|
|
33 |
class Viewer(width: Int, height: Int) extends JPanel {
|
|
34 |
val canvas = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB)
|
|
35 |
clearCanvas(Color.black)
|
|
36 |
|
|
37 |
override def paintComponent(g: Graphics) =
|
|
38 |
g.asInstanceOf[Graphics2D].drawImage(canvas, null, null)
|
|
39 |
|
|
40 |
override def getPreferredSize() =
|
|
41 |
new Dimension(width, height)
|
|
42 |
|
|
43 |
def clearCanvas(color: Color) = {
|
|
44 |
for(x <- 0 to width - 1;
|
|
45 |
y <- 0 to height - 1) canvas.setRGB(x, y, color.getRGB())
|
|
46 |
repaint()
|
|
47 |
}
|
|
48 |
|
|
49 |
}
|
|
50 |
|
|
51 |
def openViewer(width: Int, height: Int) = {
|
|
52 |
val frame = new JFrame("XYPlane")
|
|
53 |
val viewer = new Viewer(width, height)
|
|
54 |
frame.add(viewer)
|
|
55 |
frame.pack()
|
|
56 |
frame.setVisible(true)
|
|
57 |
frame.setResizable(false)
|
|
58 |
frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
|
|
59 |
viewer
|
|
60 |
}
|
|
61 |
|
|
62 |
val W = 900
|
|
63 |
val H = 800
|
|
64 |
val black = Color.black
|
|
65 |
val viewer = openViewer(W, H)
|
|
66 |
|
|
67 |
|
|
68 |
def pixel(x: Int, y: Int, color: Color) =
|
|
69 |
viewer.canvas.setRGB(x, y, color.getRGB())
|
|
70 |
|
|
71 |
|
|
72 |
def mandelbrot(start: Complex, end: Complex, level: Int) : Unit = {
|
|
73 |
viewer.clearCanvas(black)
|
|
74 |
|
|
75 |
val delta_x = (end.a - start.a) / W
|
|
76 |
val delta_y = (end.b - start.b) / H
|
|
77 |
|
137
|
78 |
for (y0 <- (0 until H)) {
|
|
79 |
for (x0 <- (0 until W)) {
|
124
|
80 |
|
|
81 |
val c = start + Complex(x0 * delta_x, y0 * delta_y)
|
|
82 |
|
|
83 |
def iters(z: Complex, it: Int) : Color = {
|
|
84 |
if (it < level && z.abs < 2) iters(z * z + c, it + 1) else
|
|
85 |
if (it == level) black else colours(it % 16)
|
|
86 |
}
|
|
87 |
|
|
88 |
pixel(x0, y0, iters(Complex(0, 0), 0))
|
143
|
89 |
}
|
|
90 |
viewer.updateUI()
|
|
91 |
}
|
124
|
92 |
}
|
|
93 |
|
|
94 |
// Examples
|
|
95 |
//==========
|
|
96 |
|
|
97 |
//for measuring time
|
|
98 |
def time_needed[T](code: => T) = {
|
|
99 |
val start = System.nanoTime()
|
|
100 |
code
|
|
101 |
val end = System.nanoTime()
|
|
102 |
(end - start) / 1.0e9
|
|
103 |
}
|
|
104 |
|
|
105 |
|
|
106 |
// example 1
|
|
107 |
val exa1 = Complex(-2.0, -1.5)
|
|
108 |
val exa2 = Complex( 1.0, 1.5)
|
|
109 |
|
|
110 |
time_needed(mandelbrot(exa1, exa2, 1000))
|
|
111 |
|
136
|
112 |
// example 2
|
|
113 |
val exb1 = Complex(-0.37465401, 0.659227668)
|
124
|
114 |
val exb2 = Complex(-0.37332410, 0.66020767)
|
|
115 |
|
|
116 |
time_needed(mandelbrot(exb1, exb2, 1000))
|
|
117 |
|
|
118 |
// example 3
|
|
119 |
val exc1 = Complex(0.435396403, 0.367981352)
|
|
120 |
val exc2 = Complex(0.451687191, 0.380210061)
|
|
121 |
|
|
122 |
time_needed(mandelbrot(exc1, exc2, 1000))
|
|
123 |
|
|
124 |
// some more computations with example 3
|
|
125 |
val delta = (exc2 - exc1) * 0.0333
|
|
126 |
|
|
127 |
time_needed(
|
136
|
128 |
for (i <- (0 to 12))
|
|
129 |
mandelbrot(exc1 + delta * i,
|
|
130 |
exc2 - delta * i, 1000))
|
124
|
131 |
|
|
132 |
|
|
133 |
|