--- a/Quot/Nominal/Abs.thy Mon Feb 01 12:06:46 2010 +0100
+++ b/Quot/Nominal/Abs.thy Mon Feb 01 12:48:18 2010 +0100
@@ -26,38 +26,11 @@
done
-datatype 'a rabst =
- RAbst "atom set" "'a::pt"
-
-fun map_fun
-where "map_fun f (RAbst bs x) = RAbst bs (f x)"
-
-fun map_rel
-where "map_rel R (RAbst bs x) (RAbst cs y) = R x y"
-
-declare [[map "rabst" = (map_fun, map_rel)]]
-
-instantiation rabst :: (pt) pt
-begin
-
-primrec
- permute_rabst
+fun
+ alpha_gen
where
- "p \<bullet> (RAbst bs x) = RAbst (p \<bullet> bs) (p \<bullet> x)"
-
-instance
-apply(default)
-apply(case_tac [!] x)
-apply(simp_all)
-done
-
-end
-
-fun
- alpha_gen
-where
- alpha_gen[simp del]:
- "(alpha_gen (bs, x) R f pi (cs, y)) \<longleftrightarrow> (f x - bs = f y - cs) \<and> ((f x - bs) \<sharp>* pi) \<and> (R (pi \<bullet> x) y)"
+ alpha_gen[simp del]:
+ "(alpha_gen (bs, x) R f pi (cs, y)) \<longleftrightarrow> (f x - bs = f y - cs) \<and> ((f x - bs) \<sharp>* pi) \<and> (R (pi \<bullet> x) y)"
notation
alpha_gen ("_ \<approx>gen _ _ _ _")
@@ -100,67 +73,17 @@
done
fun
- alpha_rabst :: "('a::pt) rabst \<Rightarrow> 'a rabst \<Rightarrow> bool" ("_ \<approx>raw _")
+ alpha_abst
where
- "(RAbst bs x) \<approx>raw (RAbst cs y) = (\<exists>p. (bs, x) \<approx>gen (op=) supp p (cs, y))"
-
-lemma alpha_reflp:
- shows "abst \<approx>raw abst"
-apply(induct abst)
-apply(simp)
-apply(rule exI)
-apply(rule alpha_gen_refl)
-apply(simp)
-done
-
-lemma alpha_symp:
- assumes a: "abst1 \<approx>raw abst2"
- shows "abst2 \<approx>raw abst1"
-using a
-apply(induct rule: alpha_rabst.induct)
-apply(simp)
-apply(erule exE)
-apply(rule exI)
-apply(rule alpha_gen_sym)
-apply(assumption)
-apply(clarsimp)
-done
+ "alpha_abst (bs, x) (cs, y) = (\<exists>p. (bs, x) \<approx>gen (op=) supp p (cs, y))"
-lemma alpha_transp:
- assumes a1: "abst1 \<approx>raw abst2"
- and a2: "abst2 \<approx>raw abst3"
- shows "abst1 \<approx>raw abst3"
-using a1 a2
-apply(induct rule: alpha_rabst.induct)
-apply(induct rule: alpha_rabst.induct)
-apply(simp)
-apply(erule exE)+
-apply(rule exI)
-apply(rule alpha_gen_trans)
-apply(assumption)
-apply(assumption)
-apply(simp)
-done
-
-lemma alpha_eqvt:
- assumes a: "abst1 \<approx>raw abst2"
- shows "(p \<bullet> abst1) \<approx>raw(p \<bullet> abst2)"
-using a
-apply(induct abst1 abst2 rule: alpha_rabst.induct)
-apply(simp)
-apply(erule exE)
-apply(rule exI)
-apply(rule alpha_gen_eqvt)
-apply(assumption)
-apply(simp)
-apply(simp add: supp_eqvt)
-apply(simp add: supp_eqvt)
-done
+notation
+ alpha_abst ("_ \<approx>abst _")
lemma test1:
assumes a1: "a \<notin> (supp x) - bs"
and a2: "b \<notin> (supp x) - bs"
- shows "(RAbst bs x) \<approx>raw (RAbst ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x))"
+ shows "(bs, x) \<approx>abst ((a \<rightleftharpoons> b) \<bullet> bs, (a \<rightleftharpoons> b) \<bullet> x)"
apply(simp)
apply(rule_tac x="(a \<rightleftharpoons> b)" in exI)
apply(simp add: alpha_gen)
@@ -176,46 +99,67 @@
fun
s_test
where
- "s_test (RAbst bs x) = (supp x) - bs"
+ "s_test (bs, x) = (supp x) - bs"
lemma s_test_lemma:
- assumes a: "x \<approx>raw y"
+ assumes a: "x \<approx>abst y"
shows "s_test x = s_test y"
using a
-apply(induct rule: alpha_rabst.induct)
+apply(induct rule: alpha_abst.induct)
apply(simp add: alpha_gen)
done
-
-quotient_type 'a abst = "('a::pt) rabst" / "alpha_rabst::('a::pt) rabst \<Rightarrow> 'a rabst \<Rightarrow> bool"
+quotient_type 'a abst = "(atom set \<times> 'a::pt)" / "alpha_abst"
apply(rule equivpI)
unfolding reflp_def symp_def transp_def
- apply(auto intro: alpha_reflp alpha_symp alpha_transp)
+ apply(simp_all)
+ apply(clarify)
+ apply(rule exI)
+ apply(rule alpha_gen_refl)
+ apply(simp)
+ apply(clarify)
+ apply(rule exI)
+ apply(rule alpha_gen_sym)
+ apply(assumption)
+ apply(clarsimp)
+ apply(clarify)
+ apply(rule exI)
+ apply(rule alpha_gen_trans)
+ apply(assumption)
+ apply(assumption)
+ apply(simp)
done
quotient_definition
"Abst::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abst"
as
- "RAbst"
+ "Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"
lemma [quot_respect]:
- shows "((op =) ===> (op =) ===> alpha_rabst) RAbst RAbst"
-apply(simp del: alpha_rabst.simps add: alpha_reflp)
+ shows "((op =) ===> (op =) ===> alpha_abst) Pair Pair"
+apply(clarsimp)
+apply(rule exI)
+apply(rule alpha_gen_refl)
+apply(simp)
done
lemma [quot_respect]:
- shows "((op =) ===> alpha_rabst ===> alpha_rabst) permute permute"
-apply(simp add: alpha_eqvt)
+ shows "((op =) ===> alpha_abst ===> alpha_abst) permute permute"
+apply(clarsimp)
+apply(rule exI)
+apply(rule alpha_gen_eqvt)
+apply(assumption)
+apply(simp_all add: supp_eqvt)
done
lemma [quot_respect]:
- shows "(alpha_rabst ===> (op =)) s_test s_test"
+ shows "(alpha_abst ===> (op =)) s_test s_test"
apply(simp add: s_test_lemma)
done
lemma abst_induct:
"\<lbrakk>\<And>as (x::'a::pt). P (Abst as x)\<rbrakk> \<Longrightarrow> P t"
-apply(lifting rabst.induct)
+apply(lifting prod.induct[where 'a="atom set" and 'b="'a"])
done
instantiation abst :: (pt) pt
@@ -224,12 +168,12 @@
quotient_definition
"permute_abst::perm \<Rightarrow> ('a::pt abst) \<Rightarrow> 'a abst"
as
- "permute::perm \<Rightarrow> ('a::pt rabst) \<Rightarrow> 'a rabst"
+ "permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"
lemma permute_ABS [simp]:
fixes x::"'a::pt" (* ??? has to be 'a \<dots> 'b does not work *)
shows "(p \<bullet> (Abst as x)) = Abst (p \<bullet> as) (p \<bullet> x)"
-apply(lifting permute_rabst.simps(1))
+apply(lifting permute_prod.simps(1)[where 'a="atom set" and 'b="'a"])
done
instance
@@ -260,7 +204,7 @@
quotient_definition
"s_test_lifted :: ('a::pt) abst \<Rightarrow> atom \<Rightarrow> bool"
as
- "s_test::('a::pt) rabst \<Rightarrow> atom \<Rightarrow> bool"
+ "s_test"
lemma s_test_lifted_simp:
shows "s_test_lifted (Abst bs x) = (supp x) - bs"
@@ -296,6 +240,7 @@
apply(simp)
done
+
lemma supp_finite_set:
fixes S::"atom set"
assumes "finite S"
@@ -315,6 +260,7 @@
apply(rule contrapos_pp)
apply(assumption)
unfolding fresh_def[symmetric]
+thm s_test_fresh_lemma
apply(drule_tac s_test_fresh_lemma)
apply(simp only: s_test_lifted_simp)
apply(simp add: fresh_def)
@@ -348,11 +294,9 @@
apply(auto)
done
-thm alpha_rabst.simps(1)
-
lemma abs_eq:
shows "(Abst bs x) = (Abst cs y) \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op =) supp p (cs, y))"
-apply(lifting alpha_rabst.simps(1))
+apply(lifting alpha_abst.simps(1))
done
end