renamed QuotScript to QuotBase
authorChristian Urban <urbanc@in.tum.de>
Mon, 25 Jan 2010 18:13:44 +0100
changeset 920 dae99175f584
parent 919 c46b6abad24b
child 921 dae038c8cd69
renamed QuotScript to QuotBase
Quot/QuotBase.thy
Quot/QuotMain.thy
Quot/QuotScript.thy
Quot/quotient_tacs.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Quot/QuotBase.thy	Mon Jan 25 18:13:44 2010 +0100
@@ -0,0 +1,694 @@
+(*  Title:      QuotBase.thy
+    Author:     Cezary Kaliszyk and Christian Urban
+*)
+
+theory QuotBase
+imports Plain ATP_Linkup Predicate
+begin
+
+text {*
+  Basic definition for equivalence relations
+  that are represented by predicates.
+*}
+
+definition
+  "equivp E \<equiv> \<forall>x y. E x y = (E x = E y)"
+
+definition
+  "reflp E \<equiv> \<forall>x. E x x"
+
+definition
+  "symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"
+
+definition
+  "transp E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"
+
+lemma equivp_reflp_symp_transp:
+  shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
+  unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
+  by blast
+
+lemma equivp_reflp:
+  shows "equivp E \<Longrightarrow> (\<And>x. E x x)"
+  by (simp only: equivp_reflp_symp_transp reflp_def)
+
+lemma equivp_symp:
+  shows "equivp E \<Longrightarrow> (\<And>x y. E x y \<Longrightarrow> E y x)"
+  by (metis equivp_reflp_symp_transp symp_def)
+
+lemma equivp_transp:
+  shows "equivp E \<Longrightarrow> (\<And>x y z. E x y \<Longrightarrow> E y z \<Longrightarrow> E x z)"
+  by (metis equivp_reflp_symp_transp transp_def)
+
+lemma equivpI:
+  assumes "reflp R" "symp R" "transp R"
+  shows "equivp R"
+  using assms by (simp add: equivp_reflp_symp_transp)
+
+lemma eq_imp_rel:  
+  shows "equivp R \<Longrightarrow> a = b \<longrightarrow> R a b" 
+by (simp add: equivp_reflp)
+
+text {* Partial equivalences: not yet used anywhere *}
+definition
+  "part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"
+
+lemma equivp_IMP_part_equivp:
+  assumes a: "equivp E"
+  shows "part_equivp E"
+  using a 
+  unfolding equivp_def part_equivp_def
+  by auto
+
+text {* Composition of Relations *}
+abbreviation 
+  rel_conj (infixr "OOO" 75)
+where
+  "r1 OOO r2 \<equiv> r1 OO r2 OO r1"
+
+section {* Quotient Predicate *}
+
+definition
+  "Quotient E Abs Rep \<equiv> 
+     (\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. E (Rep a) (Rep a)) \<and>
+     (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"
+
+lemma Quotient_abs_rep:
+  assumes a: "Quotient E Abs Rep"
+  shows "Abs (Rep a) = a"
+  using a 
+  unfolding Quotient_def
+  by simp
+
+lemma Quotient_rep_reflp:
+  assumes a: "Quotient E Abs Rep"
+  shows "E (Rep a) (Rep a)"
+  using a 
+  unfolding Quotient_def
+  by blast
+
+lemma Quotient_rel:
+  assumes a: "Quotient E Abs Rep"
+  shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
+  using a 
+  unfolding Quotient_def
+  by blast
+
+lemma Quotient_rel_rep:
+  assumes a: "Quotient R Abs Rep"
+  shows "R (Rep a) (Rep b) = (a = b)"
+  using a 
+  unfolding Quotient_def
+  by metis
+
+lemma Quotient_rep_abs:
+  assumes a: "Quotient R Abs Rep"
+  shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
+  using a unfolding Quotient_def
+  by blast
+
+lemma Quotient_rel_abs:
+  assumes a: "Quotient E Abs Rep"
+  shows "E r s \<Longrightarrow> Abs r = Abs s"
+  using a unfolding Quotient_def
+  by blast
+
+lemma Quotient_symp:
+  assumes a: "Quotient E Abs Rep"
+  shows "symp E"
+  using a unfolding Quotient_def symp_def
+  by metis
+
+lemma Quotient_transp:
+  assumes a: "Quotient E Abs Rep"
+  shows "transp E"
+  using a unfolding Quotient_def transp_def
+  by metis
+
+section {* Lemmas about (op =) *}
+
+lemma identity_equivp:
+  shows "equivp (op =)"
+  unfolding equivp_def
+  by auto
+
+lemma identity_quotient:
+  shows "Quotient (op =) id id"
+  unfolding Quotient_def id_def
+  by blast
+
+section {* Function map and function relation *}
+
+definition
+  fun_map (infixr "--->" 55)
+where
+[simp]: "fun_map f g h x = g (h (f x))"
+
+definition
+  fun_rel (infixr "===>" 55)
+where
+[simp]: "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"
+
+
+lemma fun_map_id:
+  shows "(id ---> id) = id"
+  by (simp add: expand_fun_eq id_def)
+
+lemma fun_rel_eq:
+  shows "(op =) ===> (op =) \<equiv> (op =)"
+  by (rule eq_reflection) (simp add: expand_fun_eq)
+
+lemma fun_quotient:
+  assumes q1: "Quotient R1 abs1 rep1"
+  and     q2: "Quotient R2 abs2 rep2"
+  shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
+proof -
+  have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
+    apply(simp add: expand_fun_eq)
+    using q1 q2
+    apply(simp add: Quotient_def)
+    done
+  moreover
+  have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
+    apply(auto)
+    using q1 q2 unfolding Quotient_def
+    apply(metis)
+    done
+  moreover
+  have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> 
+        (rep1 ---> abs2) r  = (rep1 ---> abs2) s)"
+    apply(auto simp add: expand_fun_eq)
+    using q1 q2 unfolding Quotient_def
+    apply(metis)
+    using q1 q2 unfolding Quotient_def
+    apply(metis)
+    using q1 q2 unfolding Quotient_def
+    apply(metis)
+    using q1 q2 unfolding Quotient_def
+    apply(metis)
+    done
+  ultimately
+  show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
+    unfolding Quotient_def by blast
+qed
+
+section {* Respects predicate *}
+
+definition
+  Respects
+where
+  "Respects R x \<equiv> (R x x)"
+
+lemma in_respects:
+  shows "(x \<in> Respects R) = R x x"
+  unfolding mem_def Respects_def by simp
+
+lemma equals_rsp:
+  assumes q: "Quotient R Abs Rep"
+  and     a: "R xa xb" "R ya yb"
+  shows "R xa ya = R xb yb"
+  using Quotient_symp[OF q] Quotient_transp[OF q] unfolding symp_def transp_def
+  using a by blast
+
+lemma lambda_prs:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
+  unfolding expand_fun_eq
+  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
+  by simp
+
+lemma lambda_prs1:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
+  unfolding expand_fun_eq
+  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
+  by simp
+
+lemma rep_abs_rsp:
+  assumes q: "Quotient R Abs Rep"
+  and     a: "R x1 x2"
+  shows "R x1 (Rep (Abs x2))"
+  using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])
+
+lemma rep_abs_rsp_left:
+  assumes q: "Quotient R Abs Rep"
+  and     a: "R x1 x2"
+  shows "R (Rep (Abs x1)) x2"
+using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])
+
+(* In the following theorem R1 can be instantiated with anything,
+   but we know some of the types of the Rep and Abs functions;
+   so by solving Quotient assumptions we can get a unique R1 that
+   will be provable; which is why we need to use apply_rsp and
+   not the primed version *)
+lemma apply_rsp:
+  fixes f g::"'a \<Rightarrow> 'c"
+  assumes q: "Quotient R1 Abs1 Rep1"
+  and     a: "(R1 ===> R2) f g" "R1 x y"
+  shows "R2 (f x) (g y)"
+  using a by simp
+
+lemma apply_rsp':
+  assumes a: "(R1 ===> R2) f g" "R1 x y"
+  shows "R2 (f x) (g y)"
+  using a by simp
+
+(* Set of lemmas for regularisation of ball and bex *)
+
+lemma ball_reg_eqv:
+  fixes P :: "'a \<Rightarrow> bool"
+  assumes a: "equivp R"
+  shows "Ball (Respects R) P = (All P)"
+  by (metis equivp_def in_respects a)
+
+lemma bex_reg_eqv:
+  fixes P :: "'a \<Rightarrow> bool"
+  assumes a: "equivp R"
+  shows "Bex (Respects R) P = (Ex P)"
+  by (metis equivp_def in_respects a)
+
+lemma ball_reg_right:
+  assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
+  shows "All P \<longrightarrow> Ball R Q"
+  by (metis COMBC_def Collect_def Collect_mem_eq a)
+
+lemma bex_reg_left:
+  assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
+  shows "Bex R Q \<longrightarrow> Ex P"
+  by (metis COMBC_def Collect_def Collect_mem_eq a)
+
+lemma ball_reg_left:
+  assumes a: "equivp R"
+  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
+  by (metis equivp_reflp in_respects a)
+
+lemma bex_reg_right:
+  assumes a: "equivp R"
+  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
+  by (metis equivp_reflp in_respects a)
+
+lemma ball_reg_eqv_range:
+  fixes P::"'a \<Rightarrow> bool"
+  and x::"'a"
+  assumes a: "equivp R2"
+  shows   "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
+  apply(rule iffI)
+  apply(rule allI)
+  apply(drule_tac x="\<lambda>y. f x" in bspec)
+  apply(simp add: in_respects)
+  apply(rule impI)
+  using a equivp_reflp_symp_transp[of "R2"]
+  apply(simp add: reflp_def)
+  apply(simp)
+  apply(simp)
+  done
+
+lemma bex_reg_eqv_range:
+  assumes a: "equivp R2"
+  shows   "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
+  apply(auto)
+  apply(rule_tac x="\<lambda>y. f x" in bexI)
+  apply(simp)
+  apply(simp add: Respects_def in_respects)
+  apply(rule impI)
+  using a equivp_reflp_symp_transp[of "R2"]
+  apply(simp add: reflp_def)
+  done
+
+lemma all_reg:
+  assumes a: "!x :: 'a. (P x --> Q x)"
+  and     b: "All P"
+  shows "All Q"
+  using a b by (metis)
+
+lemma ex_reg:
+  assumes a: "!x :: 'a. (P x --> Q x)"
+  and     b: "Ex P"
+  shows "Ex Q"
+  using a b by (metis)
+
+lemma ball_reg:
+  assumes a: "!x :: 'a. (R x --> P x --> Q x)"
+  and     b: "Ball R P"
+  shows "Ball R Q"
+  using a b by (metis COMBC_def Collect_def Collect_mem_eq)
+
+lemma bex_reg:
+  assumes a: "!x :: 'a. (R x --> P x --> Q x)"
+  and     b: "Bex R P"
+  shows "Bex R Q"
+  using a b by (metis COMBC_def Collect_def Collect_mem_eq)
+
+lemma ball_all_comm:
+  "(\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)) \<Longrightarrow> ((\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y))"
+  by auto
+
+lemma bex_ex_comm:
+  "((\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)) \<Longrightarrow> ((\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y))"
+  by auto
+
+(* Bounded abstraction *)
+definition
+  Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
+where
+  "(x \<in> p) \<Longrightarrow> (Babs p m x = m x)"
+
+definition
+  Bexeq :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+where
+  "Bexeq R P \<equiv> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))"
+
+(* 3 lemmas needed for proving repabs_inj *)
+lemma ball_rsp:
+  assumes a: "(R ===> (op =)) f g"
+  shows "Ball (Respects R) f = Ball (Respects R) g"
+  using a by (simp add: Ball_def in_respects)
+
+lemma bex_rsp:
+  assumes a: "(R ===> (op =)) f g"
+  shows "(Bex (Respects R) f = Bex (Respects R) g)"
+  using a by (simp add: Bex_def in_respects)
+
+lemma bex1_rsp:
+  assumes a: "(R ===> (op =)) f g"
+  shows "(Bex1 (Respects R) f = Bex1 (Respects R) g)"
+  using a 
+by (simp add: Ex1_def Bex1_def in_respects) auto
+
+(* TODO/FIXME: simplify the repetitions in this proof *)
+lemma bexeq_rsp:
+assumes a: "Quotient R absf repf"
+shows "((R ===> op =) ===> op =) (Bexeq R) (Bexeq R)"
+apply simp
+unfolding Bexeq_def
+apply rule
+apply rule
+apply rule
+apply rule
+apply (erule conjE)+
+apply (erule bexE)
+apply rule
+apply (rule_tac x="xa" in bexI)
+apply metis
+apply metis
+apply rule+
+apply (erule_tac x="xb" in ballE)
+prefer 2
+apply (metis)
+apply (erule_tac x="ya" in ballE)
+prefer 2
+apply (metis)
+apply (metis in_respects)
+apply (erule conjE)+
+apply (erule bexE)
+apply rule
+apply (rule_tac x="xa" in bexI)
+apply metis
+apply metis
+apply rule+
+apply (erule_tac x="xb" in ballE)
+prefer 2
+apply (metis)
+apply (erule_tac x="ya" in ballE)
+prefer 2
+apply (metis)
+apply (metis in_respects)
+done
+
+lemma babs_rsp:
+  assumes q: "Quotient R1 Abs1 Rep1"
+  and     a: "(R1 ===> R2) f g"
+  shows      "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
+  apply (auto simp add: Babs_def)
+  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
+  using a apply (simp add: Babs_def)
+  apply (simp add: in_respects)
+  using Quotient_rel[OF q]
+  by metis
+
+lemma babs_prs:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  shows "(Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f)) \<equiv> f"
+  apply(rule eq_reflection)
+  apply(rule ext)
+  apply simp
+  apply (subgoal_tac "Rep1 x \<in> Respects R1")
+  apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
+  apply (simp add: in_respects Quotient_rel_rep[OF q1])
+  done
+
+lemma babs_simp:
+  assumes q: "Quotient R1 Abs Rep"
+  shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
+  apply(rule iffI)
+  apply(simp_all only: babs_rsp[OF q])
+  apply(auto simp add: Babs_def)
+  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
+  apply(metis Babs_def)
+  apply (simp add: in_respects)
+  using Quotient_rel[OF q]
+  by metis
+
+(* If a user proves that a particular functional relation 
+   is an equivalence this may be useful in regularising *)
+lemma babs_reg_eqv:
+  shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
+  by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp)
+
+(* 3 lemmas needed for cleaning of quantifiers *)
+lemma all_prs:
+  assumes a: "Quotient R absf repf"
+  shows "Ball (Respects R) ((absf ---> id) f) = All f"
+  using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply
+by metis
+
+lemma ex_prs:
+  assumes a: "Quotient R absf repf"
+  shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
+  using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply
+  by metis
+
+lemma ex1_prs:
+  assumes a: "Quotient R absf repf"
+  shows "((absf ---> id) ---> id) (Bexeq R) f = Ex1 f"
+apply simp
+apply (subst Bexeq_def)
+apply (subst Bex_def)
+apply (subst Ex1_def)
+apply simp
+apply rule
+ apply (erule conjE)+
+ apply (erule_tac exE)
+ apply (erule conjE)
+ apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y")
+  apply (rule_tac x="absf x" in exI)
+  apply (thin_tac "\<forall>x\<in>Respects R. \<forall>y\<in>Respects R. f (absf x) \<and> f (absf y) \<longrightarrow> R x y")
+  apply (simp)
+  apply rule+
+  using a unfolding Quotient_def
+  apply metis
+ apply rule+
+ apply (erule_tac x="x" in ballE)
+  apply (erule_tac x="y" in ballE)
+   apply simp
+  apply (simp add: in_respects)
+ apply (simp add: in_respects)
+apply (erule_tac exE)
+ apply rule
+ apply (rule_tac x="repf x" in exI)
+ apply (simp only: in_respects)
+  apply rule
+ apply (metis Quotient_rel_rep[OF a])
+using a unfolding Quotient_def apply (simp)
+apply rule+
+using a unfolding Quotient_def in_respects
+apply metis
+done
+
+lemma fun_rel_id:
+  assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)"
+  shows "(R1 ===> R2) f g"
+  using a by simp
+
+lemma fun_rel_id_asm:
+  assumes a: "\<And>x y. R1 x y \<Longrightarrow> (A \<longrightarrow> R2 (f x) (g y))"
+  shows "A \<longrightarrow> (R1 ===> R2) f g"
+  using a by auto
+
+lemma quot_rel_rsp:
+  assumes a: "Quotient R Abs Rep"
+  shows "(R ===> R ===> op =) R R"
+  apply(rule fun_rel_id)+
+  apply(rule equals_rsp[OF a])
+  apply(assumption)+
+  done
+
+lemma o_prs:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  and     q3: "Quotient R3 Abs3 Rep3"
+  shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g"
+  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
+  unfolding o_def expand_fun_eq by simp
+
+lemma o_rsp:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  and     q3: "Quotient R3 Abs3 Rep3"
+  and     a1: "(R2 ===> R3) f1 f2"
+  and     a2: "(R1 ===> R2) g1 g2"
+  shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
+  using a1 a2 unfolding o_def expand_fun_eq
+  by (auto)
+
+lemma cond_prs:
+  assumes a: "Quotient R absf repf"
+  shows "absf (if a then repf b else repf c) = (if a then b else c)"
+  using a unfolding Quotient_def by auto
+
+lemma if_prs:
+  assumes q: "Quotient R Abs Rep"
+  shows "Abs (If a (Rep b) (Rep c)) = If a b c"
+using Quotient_abs_rep[OF q] by auto
+
+(* q not used *)
+lemma if_rsp:
+  assumes q: "Quotient R Abs Rep"
+  and     a: "a1 = a2" "R b1 b2" "R c1 c2"
+  shows "R (If a1 b1 c1) (If a2 b2 c2)"
+using a by auto
+
+lemma let_prs:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f"
+  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto
+
+lemma let_rsp:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     a1: "(R1 ===> R2) f g"
+  and     a2: "R1 x y"
+  shows "R2 ((Let x f)::'c) ((Let y g)::'c)"
+  using apply_rsp[OF q1 a1] a2 by auto
+
+
+
+
+(******************************************)
+(* REST OF THE FILE IS UNUSED (until now) *)
+(******************************************)
+
+lemma in_fun:
+  shows "x \<in> ((f ---> g) s) = g (f x \<in> s)"
+  by (simp add: mem_def)
+
+lemma respects_thm:
+  shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))"
+  unfolding Respects_def
+  by (simp add: expand_fun_eq)
+
+lemma respects_rep_abs:
+  assumes a: "Quotient R1 Abs1 Rep1"
+  and     b: "Respects (R1 ===> R2) f"
+  and     c: "R1 x x"
+  shows "R2 (f (Rep1 (Abs1 x))) (f x)"
+  using a b[simplified respects_thm] c unfolding Quotient_def
+  by blast
+
+lemma respects_mp:
+  assumes a: "Respects (R1 ===> R2) f"
+  and     b: "R1 x y"
+  shows "R2 (f x) (f y)"
+  using a b unfolding Respects_def
+  by simp
+
+lemma respects_o:
+  assumes a: "Respects (R2 ===> R3) f"
+  and     b: "Respects (R1 ===> R2) g"
+  shows "Respects (R1 ===> R3) (f o g)"
+  using a b unfolding Respects_def
+  by simp
+
+lemma abs_o_rep:
+  assumes a: "Quotient r absf repf"
+  shows "absf o repf = id"
+  apply(rule ext)
+  apply(simp add: Quotient_abs_rep[OF a])
+  done
+
+lemma eq_comp_r: "op = OO R OO op = \<equiv> R"
+  apply (rule eq_reflection)
+  apply (rule ext)+
+  apply auto
+  done
+
+lemma fun_rel_eq_rel:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g)
+                             \<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))"
+  using fun_quotient[OF q1 q2] unfolding Respects_def Quotient_def expand_fun_eq
+  by blast
+
+lemma let_babs:
+  "v \<in> r \<Longrightarrow> Let v (Babs r lam) = Let v lam"
+  by (simp add: Babs_def)
+
+lemma fun_rel_equals:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  and     r1: "Respects (R1 ===> R2) f"
+  and     r2: "Respects (R1 ===> R2) g" 
+  shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
+  apply(rule_tac iffI)
+  apply(rule)+
+  apply (rule apply_rsp'[of "R1" "R2"])
+  apply(subst Quotient_rel[OF fun_quotient[OF q1 q2]])
+  apply auto
+  using fun_quotient[OF q1 q2] r1 r2 unfolding Quotient_def Respects_def
+  apply (metis let_rsp q1)
+  apply (metis fun_rel_eq_rel let_rsp q1 q2 r2)
+  using r1 unfolding Respects_def expand_fun_eq
+  apply(simp (no_asm_use))
+  apply(metis Quotient_rel[OF q2] Quotient_rel_rep[OF q1])
+  done
+
+(* ask Peter: fun_rel_IMP used twice *) 
+lemma fun_rel_IMP2:
+  assumes q1: "Quotient R1 Abs1 Rep1"
+  and     q2: "Quotient R2 Abs2 Rep2"
+  and     r1: "Respects (R1 ===> R2) f"
+  and     r2: "Respects (R1 ===> R2) g" 
+  and     a:  "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g"
+  shows "R1 x y \<Longrightarrow> R2 (f x) (g y)"
+  using q1 q2 r1 r2 a
+  by (simp add: fun_rel_equals)
+
+lemma lambda_rep_abs_rsp:
+  assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))"
+  and     r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))"
+  shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))"
+  using r1 r2 by auto
+
+(* ask peter what are literal_case *)
+(* literal_case_PRS *)
+(* literal_case_RSP *)
+(* Cez: !f x. literal_case f x = f x *)
+
+(* We use id_simps which includes id_apply; so these 2 theorems can be removed *)
+lemma id_prs:
+  assumes q: "Quotient R Abs Rep"
+  shows "Abs (id (Rep e)) = id e"
+  using Quotient_abs_rep[OF q] by auto
+
+lemma id_rsp:
+  assumes q: "Quotient R Abs Rep"
+  and     a: "R e1 e2"
+  shows "R (id e1) (id e2)"
+  using a by auto
+
+end
+
--- a/Quot/QuotMain.thy	Mon Jan 25 17:53:08 2010 +0100
+++ b/Quot/QuotMain.thy	Mon Jan 25 18:13:44 2010 +0100
@@ -3,7 +3,7 @@
 *)
 
 theory QuotMain
-imports QuotScript Prove
+imports QuotBase
 uses ("quotient_info.ML")
      ("quotient_typ.ML")
      ("quotient_def.ML")
@@ -61,11 +61,6 @@
   show "Abs (R (Eps (Rep a))) = a" by simp
 qed
 
-lemma rep_refl:
-  shows "R (rep a) (rep a)"
-unfolding rep_def
-by (simp add: equivp[simplified equivp_def])
-
 lemma lem7:
   shows "(R x = R y) = (Abs (R x) = Abs (R y))" (is "?LHS = ?RHS")
 proof -
@@ -79,6 +74,12 @@
 unfolding abs_def
 by (simp only: equivp[simplified equivp_def] lem7)
 
+lemma rep_refl:
+  shows "R (rep a) (rep a)"
+unfolding rep_def
+by (simp add: equivp[simplified equivp_def])
+
+
 lemma rep_abs_rsp:
   shows "R f (rep (abs g)) = R f g"
   and   "R (rep (abs g)) f = R g f"
--- a/Quot/QuotScript.thy	Mon Jan 25 17:53:08 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,682 +0,0 @@
-theory QuotScript
-imports Plain ATP_Linkup Predicate
-begin
-
-definition
-  "equivp E \<equiv> \<forall>x y. E x y = (E x = E y)"
-
-definition
-  "reflp E \<equiv> \<forall>x. E x x"
-
-definition
-  "symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"
-
-definition
-  "transp E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"
-
-lemma equivp_reflp_symp_transp:
-  shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
-  unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
-  by (blast)
-
-lemma equivp_reflp:
-  shows "equivp E \<Longrightarrow> (\<And>x. E x x)"
-  by (simp only: equivp_reflp_symp_transp reflp_def)
-
-lemma equivp_symp:
-  shows "equivp E \<Longrightarrow> (\<And>x y. E x y \<Longrightarrow> E y x)"
-  by (metis equivp_reflp_symp_transp symp_def)
-
-lemma equivp_transp:
-  shows "equivp E \<Longrightarrow> (\<And>x y z. E x y \<Longrightarrow> E y z \<Longrightarrow> E x z)"
-  by (metis equivp_reflp_symp_transp transp_def)
-
-lemma equivpI:
-  assumes "reflp R" "symp R" "transp R"
-  shows "equivp R"
-  using assms by (simp add: equivp_reflp_symp_transp)
-
-lemma eq_imp_rel:  
-  shows "equivp R \<Longrightarrow> a = b \<longrightarrow> R a b" 
-by (simp add: equivp_reflp)
-
-definition
-  "part_equivp E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"
-
-lemma equivp_IMP_part_equivp:
-  assumes a: "equivp E"
-  shows "part_equivp E"
-  using a unfolding equivp_def part_equivp_def
-  by auto
-
-
-abbreviation 
-  rel_conj (infixr "OOO" 75)
-where
-  "r1 OOO r2 \<equiv> r1 OO r2 OO r1"
-
-definition
-  "Quotient E Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a) \<and>
-                        (\<forall>a. E (Rep a) (Rep a)) \<and>
-                        (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"
-
-(* TEST
-lemma 
-  fixes Abs1::"'b \<Rightarrow> 'c"
-  and   Abs2::"'a \<Rightarrow> 'b"
-  and   Rep1::"'c \<Rightarrow> 'b"
-  and   Rep2::"'b \<Rightarrow> 'a"
-  assumes "Quotient R1 Abs1 Rep1"
-  and     "Quotient R2 Abs2 Rep2"
-  shows "Quotient (f R2 R1) (Abs1 \<circ> Abs2) (Rep2 \<circ> Rep1)"
-*)
-
-lemma Quotient_abs_rep:
-  assumes a: "Quotient E Abs Rep"
-  shows "Abs (Rep a) \<equiv> a"
-  using a unfolding Quotient_def
-  by simp
-
-lemma Quotient_rep_reflp:
-  assumes a: "Quotient E Abs Rep"
-  shows "E (Rep a) (Rep a)"
-  using a unfolding Quotient_def
-  by blast
-
-lemma Quotient_rel:
-  assumes a: "Quotient E Abs Rep"
-  shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
-  using a unfolding Quotient_def
-  by blast
-
-lemma Quotient_rel_rep:
-  assumes a: "Quotient R Abs Rep"
-  shows "R (Rep a) (Rep b) \<equiv> (a = b)"
-  apply (rule eq_reflection)
-  using a unfolding Quotient_def
-  by metis
-
-lemma Quotient_rep_abs:
-  assumes a: "Quotient R Abs Rep"
-  shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
-  using a unfolding Quotient_def
-  by blast
-
-lemma Quotient_rel_abs:
-  assumes a: "Quotient E Abs Rep"
-  shows "E r s \<Longrightarrow> Abs r = Abs s"
-  using a unfolding Quotient_def
-  by blast
-
-lemma identity_equivp:
-  shows "equivp (op =)"
-  unfolding equivp_def
-  by auto
-
-lemma identity_quotient:
-  shows "Quotient (op =) id id"
-  unfolding Quotient_def id_def
-  by blast
-
-lemma Quotient_symp:
-  assumes a: "Quotient E Abs Rep"
-  shows "symp E"
-  using a unfolding Quotient_def symp_def
-  by metis
-
-lemma Quotient_transp:
-  assumes a: "Quotient E Abs Rep"
-  shows "transp E"
-  using a unfolding Quotient_def transp_def
-  by metis
-
-definition
-  fun_map (infixr "--->" 55)
-where
-[simp]: "fun_map f g h x = g (h (f x))"
-
-lemma fun_map_id:
-  shows "(id ---> id) = id"
-  by (simp add: expand_fun_eq id_def)
-
-definition
-  fun_rel (infixr "===>" 55)
-where
-[simp]: "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"
-
-lemma fun_rel_eq:
-  "(op =) ===> (op =) \<equiv> (op =)"
-  by (rule eq_reflection) (simp add: expand_fun_eq)
-
-lemma fun_quotient:
-  assumes q1: "Quotient R1 abs1 rep1"
-  and     q2: "Quotient R2 abs2 rep2"
-  shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
-proof -
-  have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
-    apply(simp add: expand_fun_eq)
-    using q1 q2
-    apply(simp add: Quotient_def)
-    done
-  moreover
-  have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
-    apply(auto)
-    using q1 q2 unfolding Quotient_def
-    apply(metis)
-    done
-  moreover
-  have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> 
-        (rep1 ---> abs2) r  = (rep1 ---> abs2) s)"
-    apply(auto simp add: expand_fun_eq)
-    using q1 q2 unfolding Quotient_def
-    apply(metis)
-    using q1 q2 unfolding Quotient_def
-    apply(metis)
-    using q1 q2 unfolding Quotient_def
-    apply(metis)
-    using q1 q2 unfolding Quotient_def
-    apply(metis)
-    done
-  ultimately
-  show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
-    unfolding Quotient_def by blast
-qed
-
-definition
-  Respects
-where
-  "Respects R x \<equiv> (R x x)"
-
-lemma in_respects:
-  shows "(x \<in> Respects R) = R x x"
-  unfolding mem_def Respects_def by simp
-
-lemma equals_rsp:
-  assumes q: "Quotient R Abs Rep"
-  and     a: "R xa xb" "R ya yb"
-  shows "R xa ya = R xb yb"
-  using Quotient_symp[OF q] Quotient_transp[OF q] unfolding symp_def transp_def
-  using a by blast
-
-lemma lambda_prs:
-  assumes q1: "Quotient R1 Abs1 Rep1"
-  and     q2: "Quotient R2 Abs2 Rep2"
-  shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
-  unfolding expand_fun_eq
-  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
-  by simp
-
-lemma lambda_prs1:
-  assumes q1: "Quotient R1 Abs1 Rep1"
-  and     q2: "Quotient R2 Abs2 Rep2"
-  shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
-  unfolding expand_fun_eq
-  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
-  by simp
-
-lemma rep_abs_rsp:
-  assumes q: "Quotient R Abs Rep"
-  and     a: "R x1 x2"
-  shows "R x1 (Rep (Abs x2))"
-  using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])
-
-lemma rep_abs_rsp_left:
-  assumes q: "Quotient R Abs Rep"
-  and     a: "R x1 x2"
-  shows "R (Rep (Abs x1)) x2"
-using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])
-
-(* In the following theorem R1 can be instantiated with anything,
-   but we know some of the types of the Rep and Abs functions;
-   so by solving Quotient assumptions we can get a unique R1 that
-   will be provable; which is why we need to use apply_rsp and
-   not the primed version *)
-lemma apply_rsp:
-  fixes f g::"'a \<Rightarrow> 'c"
-  assumes q: "Quotient R1 Abs1 Rep1"
-  and     a: "(R1 ===> R2) f g" "R1 x y"
-  shows "R2 (f x) (g y)"
-  using a by simp
-
-lemma apply_rsp':
-  assumes a: "(R1 ===> R2) f g" "R1 x y"
-  shows "R2 (f x) (g y)"
-  using a by simp
-
-(* Set of lemmas for regularisation of ball and bex *)
-
-lemma ball_reg_eqv:
-  fixes P :: "'a \<Rightarrow> bool"
-  assumes a: "equivp R"
-  shows "Ball (Respects R) P = (All P)"
-  by (metis equivp_def in_respects a)
-
-lemma bex_reg_eqv:
-  fixes P :: "'a \<Rightarrow> bool"
-  assumes a: "equivp R"
-  shows "Bex (Respects R) P = (Ex P)"
-  by (metis equivp_def in_respects a)
-
-lemma ball_reg_right:
-  assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
-  shows "All P \<longrightarrow> Ball R Q"
-  by (metis COMBC_def Collect_def Collect_mem_eq a)
-
-lemma bex_reg_left:
-  assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
-  shows "Bex R Q \<longrightarrow> Ex P"
-  by (metis COMBC_def Collect_def Collect_mem_eq a)
-
-lemma ball_reg_left:
-  assumes a: "equivp R"
-  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
-  by (metis equivp_reflp in_respects a)
-
-lemma bex_reg_right:
-  assumes a: "equivp R"
-  shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
-  by (metis equivp_reflp in_respects a)
-
-lemma ball_reg_eqv_range:
-  fixes P::"'a \<Rightarrow> bool"
-  and x::"'a"
-  assumes a: "equivp R2"
-  shows   "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
-  apply(rule iffI)
-  apply(rule allI)
-  apply(drule_tac x="\<lambda>y. f x" in bspec)
-  apply(simp add: in_respects)
-  apply(rule impI)
-  using a equivp_reflp_symp_transp[of "R2"]
-  apply(simp add: reflp_def)
-  apply(simp)
-  apply(simp)
-  done
-
-lemma bex_reg_eqv_range:
-  assumes a: "equivp R2"
-  shows   "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
-  apply(auto)
-  apply(rule_tac x="\<lambda>y. f x" in bexI)
-  apply(simp)
-  apply(simp add: Respects_def in_respects)
-  apply(rule impI)
-  using a equivp_reflp_symp_transp[of "R2"]
-  apply(simp add: reflp_def)
-  done
-
-lemma all_reg:
-  assumes a: "!x :: 'a. (P x --> Q x)"
-  and     b: "All P"
-  shows "All Q"
-  using a b by (metis)
-
-lemma ex_reg:
-  assumes a: "!x :: 'a. (P x --> Q x)"
-  and     b: "Ex P"
-  shows "Ex Q"
-  using a b by (metis)
-
-lemma ball_reg:
-  assumes a: "!x :: 'a. (R x --> P x --> Q x)"
-  and     b: "Ball R P"
-  shows "Ball R Q"
-  using a b by (metis COMBC_def Collect_def Collect_mem_eq)
-
-lemma bex_reg:
-  assumes a: "!x :: 'a. (R x --> P x --> Q x)"
-  and     b: "Bex R P"
-  shows "Bex R Q"
-  using a b by (metis COMBC_def Collect_def Collect_mem_eq)
-
-lemma ball_all_comm:
-  "(\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)) \<Longrightarrow> ((\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y))"
-  by auto
-
-lemma bex_ex_comm:
-  "((\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)) \<Longrightarrow> ((\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y))"
-  by auto
-
-(* Bounded abstraction *)
-definition
-  Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
-where
-  "(x \<in> p) \<Longrightarrow> (Babs p m x = m x)"
-
-definition
-  Bexeq :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
-where
-  "Bexeq R P \<equiv> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))"
-
-(* 3 lemmas needed for proving repabs_inj *)
-lemma ball_rsp:
-  assumes a: "(R ===> (op =)) f g"
-  shows "Ball (Respects R) f = Ball (Respects R) g"
-  using a by (simp add: Ball_def in_respects)
-
-lemma bex_rsp:
-  assumes a: "(R ===> (op =)) f g"
-  shows "(Bex (Respects R) f = Bex (Respects R) g)"
-  using a by (simp add: Bex_def in_respects)
-
-lemma bex1_rsp:
-  assumes a: "(R ===> (op =)) f g"
-  shows "(Bex1 (Respects R) f = Bex1 (Respects R) g)"
-  using a 
-by (simp add: Ex1_def Bex1_def in_respects) auto
-
-(* TODO/FIXME: simplify the repetitions in this proof *)
-lemma bexeq_rsp:
-assumes a: "Quotient R absf repf"
-shows "((R ===> op =) ===> op =) (Bexeq R) (Bexeq R)"
-apply simp
-unfolding Bexeq_def
-apply rule
-apply rule
-apply rule
-apply rule
-apply (erule conjE)+
-apply (erule bexE)
-apply rule
-apply (rule_tac x="xa" in bexI)
-apply metis
-apply metis
-apply rule+
-apply (erule_tac x="xb" in ballE)
-prefer 2
-apply (metis)
-apply (erule_tac x="ya" in ballE)
-prefer 2
-apply (metis)
-apply (metis in_respects)
-apply (erule conjE)+
-apply (erule bexE)
-apply rule
-apply (rule_tac x="xa" in bexI)
-apply metis
-apply metis
-apply rule+
-apply (erule_tac x="xb" in ballE)
-prefer 2
-apply (metis)
-apply (erule_tac x="ya" in ballE)
-prefer 2
-apply (metis)
-apply (metis in_respects)
-done
-
-lemma babs_rsp:
-  assumes q: "Quotient R1 Abs1 Rep1"
-  and     a: "(R1 ===> R2) f g"
-  shows      "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
-  apply (auto simp add: Babs_def)
-  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
-  using a apply (simp add: Babs_def)
-  apply (simp add: in_respects)
-  using Quotient_rel[OF q]
-  by metis
-
-lemma babs_prs:
-  assumes q1: "Quotient R1 Abs1 Rep1"
-  and     q2: "Quotient R2 Abs2 Rep2"
-  shows "(Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f)) \<equiv> f"
-  apply(rule eq_reflection)
-  apply(rule ext)
-  apply simp
-  apply (subgoal_tac "Rep1 x \<in> Respects R1")
-  apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
-  apply (simp add: in_respects Quotient_rel_rep[OF q1])
-  done
-
-lemma babs_simp:
-  assumes q: "Quotient R1 Abs Rep"
-  shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
-  apply(rule iffI)
-  apply(simp_all only: babs_rsp[OF q])
-  apply(auto simp add: Babs_def)
-  apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
-  apply(metis Babs_def)
-  apply (simp add: in_respects)
-  using Quotient_rel[OF q]
-  by metis
-
-(* If a user proves that a particular functional relation 
-   is an equivalence this may be useful in regularising *)
-lemma babs_reg_eqv:
-  shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
-  by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp)
-
-(* 3 lemmas needed for cleaning of quantifiers *)
-lemma all_prs:
-  assumes a: "Quotient R absf repf"
-  shows "Ball (Respects R) ((absf ---> id) f) = All f"
-  using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply
-by metis
-
-lemma ex_prs:
-  assumes a: "Quotient R absf repf"
-  shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
-  using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply
-  by metis
-
-lemma ex1_prs:
-  assumes a: "Quotient R absf repf"
-  shows "((absf ---> id) ---> id) (Bexeq R) f = Ex1 f"
-apply simp
-apply (subst Bexeq_def)
-apply (subst Bex_def)
-apply (subst Ex1_def)
-apply simp
-apply rule
- apply (erule conjE)+
- apply (erule_tac exE)
- apply (erule conjE)
- apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y")
-  apply (rule_tac x="absf x" in exI)
-  apply (thin_tac "\<forall>x\<in>Respects R. \<forall>y\<in>Respects R. f (absf x) \<and> f (absf y) \<longrightarrow> R x y")
-  apply (simp)
-  apply rule+
-  using a unfolding Quotient_def
-  apply metis
- apply rule+
- apply (erule_tac x="x" in ballE)
-  apply (erule_tac x="y" in ballE)
-   apply simp
-  apply (simp add: in_respects)
- apply (simp add: in_respects)
-apply (erule_tac exE)
- apply rule
- apply (rule_tac x="repf x" in exI)
- apply (simp only: in_respects)
-  apply rule
- apply (metis Quotient_rel_rep[OF a])
-using a unfolding Quotient_def apply (simp)
-apply rule+
-using a unfolding Quotient_def in_respects
-apply metis
-done
-
-lemma fun_rel_id:
-  assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)"
-  shows "(R1 ===> R2) f g"
-  using a by simp
-
-lemma fun_rel_id_asm:
-  assumes a: "\<And>x y. R1 x y \<Longrightarrow> (A \<longrightarrow> R2 (f x) (g y))"
-  shows "A \<longrightarrow> (R1 ===> R2) f g"
-  using a by auto
-
-lemma quot_rel_rsp:
-  assumes a: "Quotient R Abs Rep"
-  shows "(R ===> R ===> op =) R R"
-  apply(rule fun_rel_id)+
-  apply(rule equals_rsp[OF a])
-  apply(assumption)+
-  done
-
-lemma o_prs:
-  assumes q1: "Quotient R1 Abs1 Rep1"
-  and     q2: "Quotient R2 Abs2 Rep2"
-  and     q3: "Quotient R3 Abs3 Rep3"
-  shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g"
-  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
-  unfolding o_def expand_fun_eq by simp
-
-lemma o_rsp:
-  assumes q1: "Quotient R1 Abs1 Rep1"
-  and     q2: "Quotient R2 Abs2 Rep2"
-  and     q3: "Quotient R3 Abs3 Rep3"
-  and     a1: "(R2 ===> R3) f1 f2"
-  and     a2: "(R1 ===> R2) g1 g2"
-  shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
-  using a1 a2 unfolding o_def expand_fun_eq
-  by (auto)
-
-lemma cond_prs:
-  assumes a: "Quotient R absf repf"
-  shows "absf (if a then repf b else repf c) = (if a then b else c)"
-  using a unfolding Quotient_def by auto
-
-lemma if_prs:
-  assumes q: "Quotient R Abs Rep"
-  shows "Abs (If a (Rep b) (Rep c)) = If a b c"
-using Quotient_abs_rep[OF q] by auto
-
-(* q not used *)
-lemma if_rsp:
-  assumes q: "Quotient R Abs Rep"
-  and     a: "a1 = a2" "R b1 b2" "R c1 c2"
-  shows "R (If a1 b1 c1) (If a2 b2 c2)"
-using a by auto
-
-lemma let_prs:
-  assumes q1: "Quotient R1 Abs1 Rep1"
-  and     q2: "Quotient R2 Abs2 Rep2"
-  shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f"
-  using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto
-
-lemma let_rsp:
-  assumes q1: "Quotient R1 Abs1 Rep1"
-  and     a1: "(R1 ===> R2) f g"
-  and     a2: "R1 x y"
-  shows "R2 ((Let x f)::'c) ((Let y g)::'c)"
-  using apply_rsp[OF q1 a1] a2 by auto
-
-
-
-
-(******************************************)
-(* REST OF THE FILE IS UNUSED (until now) *)
-(******************************************)
-
-lemma in_fun:
-  shows "x \<in> ((f ---> g) s) = g (f x \<in> s)"
-  by (simp add: mem_def)
-
-lemma respects_thm:
-  shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))"
-  unfolding Respects_def
-  by (simp add: expand_fun_eq)
-
-lemma respects_rep_abs:
-  assumes a: "Quotient R1 Abs1 Rep1"
-  and     b: "Respects (R1 ===> R2) f"
-  and     c: "R1 x x"
-  shows "R2 (f (Rep1 (Abs1 x))) (f x)"
-  using a b[simplified respects_thm] c unfolding Quotient_def
-  by blast
-
-lemma respects_mp:
-  assumes a: "Respects (R1 ===> R2) f"
-  and     b: "R1 x y"
-  shows "R2 (f x) (f y)"
-  using a b unfolding Respects_def
-  by simp
-
-lemma respects_o:
-  assumes a: "Respects (R2 ===> R3) f"
-  and     b: "Respects (R1 ===> R2) g"
-  shows "Respects (R1 ===> R3) (f o g)"
-  using a b unfolding Respects_def
-  by simp
-
-lemma abs_o_rep:
-  assumes a: "Quotient r absf repf"
-  shows "absf o repf = id"
-  apply(rule ext)
-  apply(simp add: Quotient_abs_rep[OF a])
-  done
-
-lemma eq_comp_r: "op = OO R OO op = \<equiv> R"
-  apply (rule eq_reflection)
-  apply (rule ext)+
-  apply auto
-  done
-
-lemma fun_rel_eq_rel:
-  assumes q1: "Quotient R1 Abs1 Rep1"
-  and     q2: "Quotient R2 Abs2 Rep2"
-  shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g)
-                             \<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))"
-  using fun_quotient[OF q1 q2] unfolding Respects_def Quotient_def expand_fun_eq
-  by blast
-
-lemma let_babs:
-  "v \<in> r \<Longrightarrow> Let v (Babs r lam) = Let v lam"
-  by (simp add: Babs_def)
-
-lemma fun_rel_equals:
-  assumes q1: "Quotient R1 Abs1 Rep1"
-  and     q2: "Quotient R2 Abs2 Rep2"
-  and     r1: "Respects (R1 ===> R2) f"
-  and     r2: "Respects (R1 ===> R2) g" 
-  shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
-  apply(rule_tac iffI)
-  apply(rule)+
-  apply (rule apply_rsp'[of "R1" "R2"])
-  apply(subst Quotient_rel[OF fun_quotient[OF q1 q2]])
-  apply auto
-  using fun_quotient[OF q1 q2] r1 r2 unfolding Quotient_def Respects_def
-  apply (metis let_rsp q1)
-  apply (metis fun_rel_eq_rel let_rsp q1 q2 r2)
-  using r1 unfolding Respects_def expand_fun_eq
-  apply(simp (no_asm_use))
-  apply(metis Quotient_rel[OF q2] Quotient_rel_rep[OF q1])
-  done
-
-(* ask Peter: fun_rel_IMP used twice *) 
-lemma fun_rel_IMP2:
-  assumes q1: "Quotient R1 Abs1 Rep1"
-  and     q2: "Quotient R2 Abs2 Rep2"
-  and     r1: "Respects (R1 ===> R2) f"
-  and     r2: "Respects (R1 ===> R2) g" 
-  and     a:  "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g"
-  shows "R1 x y \<Longrightarrow> R2 (f x) (g y)"
-  using q1 q2 r1 r2 a
-  by (simp add: fun_rel_equals)
-
-lemma lambda_rep_abs_rsp:
-  assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))"
-  and     r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))"
-  shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))"
-  using r1 r2 by auto
-
-(* ask peter what are literal_case *)
-(* literal_case_PRS *)
-(* literal_case_RSP *)
-(* Cez: !f x. literal_case f x = f x *)
-
-(* We use id_simps which includes id_apply; so these 2 theorems can be removed *)
-lemma id_prs:
-  assumes q: "Quotient R Abs Rep"
-  shows "Abs (id (Rep e)) = id e"
-  using Quotient_abs_rep[OF q] by auto
-
-lemma id_rsp:
-  assumes q: "Quotient R Abs Rep"
-  and     a: "R e1 e2"
-  shows "R (id e1) (id e2)"
-  using a by auto
-
-end
-
--- a/Quot/quotient_tacs.ML	Mon Jan 25 17:53:08 2010 +0100
+++ b/Quot/quotient_tacs.ML	Mon Jan 25 18:13:44 2010 +0100
@@ -526,7 +526,8 @@
 
   fun mk_simps thms = (mk_minimal_ss lthy) addsimps thms addSolver quotient_solver
   val ss1 = mk_simps (defs @ prs @ @{thms babs_prs all_prs ex_prs ex1_prs})
-  val ss2 = mk_simps (@{thms Quotient_abs_rep Quotient_rel_rep ex1_prs} @ ids)
+  val ss2 = mk_simps (@{thms Quotient_abs_rep[THEN eq_reflection] 
+                             Quotient_rel_rep[THEN eq_reflection] ex1_prs} @ ids)
 in
   EVERY' [simp_tac ss1,
           fun_map_tac lthy,