# HG changeset patch # User Christian Urban # Date 1264439624 -3600 # Node ID dae99175f584cb6918731886e615a886b7a0ba0a # Parent c46b6abad24b33b59326520b1cb875404d2506a0 renamed QuotScript to QuotBase diff -r c46b6abad24b -r dae99175f584 Quot/QuotBase.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Quot/QuotBase.thy Mon Jan 25 18:13:44 2010 +0100 @@ -0,0 +1,694 @@ +(* Title: QuotBase.thy + Author: Cezary Kaliszyk and Christian Urban +*) + +theory QuotBase +imports Plain ATP_Linkup Predicate +begin + +text {* + Basic definition for equivalence relations + that are represented by predicates. +*} + +definition + "equivp E \ \x y. E x y = (E x = E y)" + +definition + "reflp E \ \x. E x x" + +definition + "symp E \ \x y. E x y \ E y x" + +definition + "transp E \ \x y z. E x y \ E y z \ E x z" + +lemma equivp_reflp_symp_transp: + shows "equivp E = (reflp E \ symp E \ transp E)" + unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq + by blast + +lemma equivp_reflp: + shows "equivp E \ (\x. E x x)" + by (simp only: equivp_reflp_symp_transp reflp_def) + +lemma equivp_symp: + shows "equivp E \ (\x y. E x y \ E y x)" + by (metis equivp_reflp_symp_transp symp_def) + +lemma equivp_transp: + shows "equivp E \ (\x y z. E x y \ E y z \ E x z)" + by (metis equivp_reflp_symp_transp transp_def) + +lemma equivpI: + assumes "reflp R" "symp R" "transp R" + shows "equivp R" + using assms by (simp add: equivp_reflp_symp_transp) + +lemma eq_imp_rel: + shows "equivp R \ a = b \ R a b" +by (simp add: equivp_reflp) + +text {* Partial equivalences: not yet used anywhere *} +definition + "part_equivp E \ (\x. E x x) \ (\x y. E x y = (E x x \ E y y \ (E x = E y)))" + +lemma equivp_IMP_part_equivp: + assumes a: "equivp E" + shows "part_equivp E" + using a + unfolding equivp_def part_equivp_def + by auto + +text {* Composition of Relations *} +abbreviation + rel_conj (infixr "OOO" 75) +where + "r1 OOO r2 \ r1 OO r2 OO r1" + +section {* Quotient Predicate *} + +definition + "Quotient E Abs Rep \ + (\a. Abs (Rep a) = a) \ (\a. E (Rep a) (Rep a)) \ + (\r s. E r s = (E r r \ E s s \ (Abs r = Abs s)))" + +lemma Quotient_abs_rep: + assumes a: "Quotient E Abs Rep" + shows "Abs (Rep a) = a" + using a + unfolding Quotient_def + by simp + +lemma Quotient_rep_reflp: + assumes a: "Quotient E Abs Rep" + shows "E (Rep a) (Rep a)" + using a + unfolding Quotient_def + by blast + +lemma Quotient_rel: + assumes a: "Quotient E Abs Rep" + shows " E r s = (E r r \ E s s \ (Abs r = Abs s))" + using a + unfolding Quotient_def + by blast + +lemma Quotient_rel_rep: + assumes a: "Quotient R Abs Rep" + shows "R (Rep a) (Rep b) = (a = b)" + using a + unfolding Quotient_def + by metis + +lemma Quotient_rep_abs: + assumes a: "Quotient R Abs Rep" + shows "R r r \ R (Rep (Abs r)) r" + using a unfolding Quotient_def + by blast + +lemma Quotient_rel_abs: + assumes a: "Quotient E Abs Rep" + shows "E r s \ Abs r = Abs s" + using a unfolding Quotient_def + by blast + +lemma Quotient_symp: + assumes a: "Quotient E Abs Rep" + shows "symp E" + using a unfolding Quotient_def symp_def + by metis + +lemma Quotient_transp: + assumes a: "Quotient E Abs Rep" + shows "transp E" + using a unfolding Quotient_def transp_def + by metis + +section {* Lemmas about (op =) *} + +lemma identity_equivp: + shows "equivp (op =)" + unfolding equivp_def + by auto + +lemma identity_quotient: + shows "Quotient (op =) id id" + unfolding Quotient_def id_def + by blast + +section {* Function map and function relation *} + +definition + fun_map (infixr "--->" 55) +where +[simp]: "fun_map f g h x = g (h (f x))" + +definition + fun_rel (infixr "===>" 55) +where +[simp]: "fun_rel E1 E2 f g = (\x y. E1 x y \ E2 (f x) (g y))" + + +lemma fun_map_id: + shows "(id ---> id) = id" + by (simp add: expand_fun_eq id_def) + +lemma fun_rel_eq: + shows "(op =) ===> (op =) \ (op =)" + by (rule eq_reflection) (simp add: expand_fun_eq) + +lemma fun_quotient: + assumes q1: "Quotient R1 abs1 rep1" + and q2: "Quotient R2 abs2 rep2" + shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" +proof - + have "\a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a" + apply(simp add: expand_fun_eq) + using q1 q2 + apply(simp add: Quotient_def) + done + moreover + have "\a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)" + apply(auto) + using q1 q2 unfolding Quotient_def + apply(metis) + done + moreover + have "\r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \ (R1 ===> R2) s s \ + (rep1 ---> abs2) r = (rep1 ---> abs2) s)" + apply(auto simp add: expand_fun_eq) + using q1 q2 unfolding Quotient_def + apply(metis) + using q1 q2 unfolding Quotient_def + apply(metis) + using q1 q2 unfolding Quotient_def + apply(metis) + using q1 q2 unfolding Quotient_def + apply(metis) + done + ultimately + show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" + unfolding Quotient_def by blast +qed + +section {* Respects predicate *} + +definition + Respects +where + "Respects R x \ (R x x)" + +lemma in_respects: + shows "(x \ Respects R) = R x x" + unfolding mem_def Respects_def by simp + +lemma equals_rsp: + assumes q: "Quotient R Abs Rep" + and a: "R xa xb" "R ya yb" + shows "R xa ya = R xb yb" + using Quotient_symp[OF q] Quotient_transp[OF q] unfolding symp_def transp_def + using a by blast + +lemma lambda_prs: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "(Rep1 ---> Abs2) (\x. Rep2 (f (Abs1 x))) = (\x. f x)" + unfolding expand_fun_eq + using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] + by simp + +lemma lambda_prs1: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "(Rep1 ---> Abs2) (\x. (Abs1 ---> Rep2) f x) = (\x. f x)" + unfolding expand_fun_eq + using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] + by simp + +lemma rep_abs_rsp: + assumes q: "Quotient R Abs Rep" + and a: "R x1 x2" + shows "R x1 (Rep (Abs x2))" + using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]) + +lemma rep_abs_rsp_left: + assumes q: "Quotient R Abs Rep" + and a: "R x1 x2" + shows "R (Rep (Abs x1)) x2" +using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]) + +(* In the following theorem R1 can be instantiated with anything, + but we know some of the types of the Rep and Abs functions; + so by solving Quotient assumptions we can get a unique R1 that + will be provable; which is why we need to use apply_rsp and + not the primed version *) +lemma apply_rsp: + fixes f g::"'a \ 'c" + assumes q: "Quotient R1 Abs1 Rep1" + and a: "(R1 ===> R2) f g" "R1 x y" + shows "R2 (f x) (g y)" + using a by simp + +lemma apply_rsp': + assumes a: "(R1 ===> R2) f g" "R1 x y" + shows "R2 (f x) (g y)" + using a by simp + +(* Set of lemmas for regularisation of ball and bex *) + +lemma ball_reg_eqv: + fixes P :: "'a \ bool" + assumes a: "equivp R" + shows "Ball (Respects R) P = (All P)" + by (metis equivp_def in_respects a) + +lemma bex_reg_eqv: + fixes P :: "'a \ bool" + assumes a: "equivp R" + shows "Bex (Respects R) P = (Ex P)" + by (metis equivp_def in_respects a) + +lemma ball_reg_right: + assumes a: "\x. R x \ P x \ Q x" + shows "All P \ Ball R Q" + by (metis COMBC_def Collect_def Collect_mem_eq a) + +lemma bex_reg_left: + assumes a: "\x. R x \ Q x \ P x" + shows "Bex R Q \ Ex P" + by (metis COMBC_def Collect_def Collect_mem_eq a) + +lemma ball_reg_left: + assumes a: "equivp R" + shows "(\x. (Q x \ P x)) \ Ball (Respects R) Q \ All P" + by (metis equivp_reflp in_respects a) + +lemma bex_reg_right: + assumes a: "equivp R" + shows "(\x. (Q x \ P x)) \ Ex Q \ Bex (Respects R) P" + by (metis equivp_reflp in_respects a) + +lemma ball_reg_eqv_range: + fixes P::"'a \ bool" + and x::"'a" + assumes a: "equivp R2" + shows "(Ball (Respects (R1 ===> R2)) (\f. P (f x)) = All (\f. P (f x)))" + apply(rule iffI) + apply(rule allI) + apply(drule_tac x="\y. f x" in bspec) + apply(simp add: in_respects) + apply(rule impI) + using a equivp_reflp_symp_transp[of "R2"] + apply(simp add: reflp_def) + apply(simp) + apply(simp) + done + +lemma bex_reg_eqv_range: + assumes a: "equivp R2" + shows "(Bex (Respects (R1 ===> R2)) (\f. P (f x)) = Ex (\f. P (f x)))" + apply(auto) + apply(rule_tac x="\y. f x" in bexI) + apply(simp) + apply(simp add: Respects_def in_respects) + apply(rule impI) + using a equivp_reflp_symp_transp[of "R2"] + apply(simp add: reflp_def) + done + +lemma all_reg: + assumes a: "!x :: 'a. (P x --> Q x)" + and b: "All P" + shows "All Q" + using a b by (metis) + +lemma ex_reg: + assumes a: "!x :: 'a. (P x --> Q x)" + and b: "Ex P" + shows "Ex Q" + using a b by (metis) + +lemma ball_reg: + assumes a: "!x :: 'a. (R x --> P x --> Q x)" + and b: "Ball R P" + shows "Ball R Q" + using a b by (metis COMBC_def Collect_def Collect_mem_eq) + +lemma bex_reg: + assumes a: "!x :: 'a. (R x --> P x --> Q x)" + and b: "Bex R P" + shows "Bex R Q" + using a b by (metis COMBC_def Collect_def Collect_mem_eq) + +lemma ball_all_comm: + "(\y. (\x\P. A x y) \ (\x. B x y)) \ ((\x\P. \y. A x y) \ (\x. \y. B x y))" + by auto + +lemma bex_ex_comm: + "((\y. \x. A x y) \ (\y. \x\P. B x y)) \ ((\x. \y. A x y) \ (\x\P. \y. B x y))" + by auto + +(* Bounded abstraction *) +definition + Babs :: "('a \ bool) \ ('a \ 'b) \ 'a \ 'b" +where + "(x \ p) \ (Babs p m x = m x)" + +definition + Bexeq :: "('a \ 'a \ bool) \ ('a \ bool) \ bool" +where + "Bexeq R P \ (\x \ Respects R. P x) \ (\x \ Respects R. \y \ Respects R. ((P x \ P y) \ (R x y)))" + +(* 3 lemmas needed for proving repabs_inj *) +lemma ball_rsp: + assumes a: "(R ===> (op =)) f g" + shows "Ball (Respects R) f = Ball (Respects R) g" + using a by (simp add: Ball_def in_respects) + +lemma bex_rsp: + assumes a: "(R ===> (op =)) f g" + shows "(Bex (Respects R) f = Bex (Respects R) g)" + using a by (simp add: Bex_def in_respects) + +lemma bex1_rsp: + assumes a: "(R ===> (op =)) f g" + shows "(Bex1 (Respects R) f = Bex1 (Respects R) g)" + using a +by (simp add: Ex1_def Bex1_def in_respects) auto + +(* TODO/FIXME: simplify the repetitions in this proof *) +lemma bexeq_rsp: +assumes a: "Quotient R absf repf" +shows "((R ===> op =) ===> op =) (Bexeq R) (Bexeq R)" +apply simp +unfolding Bexeq_def +apply rule +apply rule +apply rule +apply rule +apply (erule conjE)+ +apply (erule bexE) +apply rule +apply (rule_tac x="xa" in bexI) +apply metis +apply metis +apply rule+ +apply (erule_tac x="xb" in ballE) +prefer 2 +apply (metis) +apply (erule_tac x="ya" in ballE) +prefer 2 +apply (metis) +apply (metis in_respects) +apply (erule conjE)+ +apply (erule bexE) +apply rule +apply (rule_tac x="xa" in bexI) +apply metis +apply metis +apply rule+ +apply (erule_tac x="xb" in ballE) +prefer 2 +apply (metis) +apply (erule_tac x="ya" in ballE) +prefer 2 +apply (metis) +apply (metis in_respects) +done + +lemma babs_rsp: + assumes q: "Quotient R1 Abs1 Rep1" + and a: "(R1 ===> R2) f g" + shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)" + apply (auto simp add: Babs_def) + apply (subgoal_tac "x \ Respects R1 \ y \ Respects R1") + using a apply (simp add: Babs_def) + apply (simp add: in_respects) + using Quotient_rel[OF q] + by metis + +lemma babs_prs: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "(Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f)) \ f" + apply(rule eq_reflection) + apply(rule ext) + apply simp + apply (subgoal_tac "Rep1 x \ Respects R1") + apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) + apply (simp add: in_respects Quotient_rel_rep[OF q1]) + done + +lemma babs_simp: + assumes q: "Quotient R1 Abs Rep" + shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)" + apply(rule iffI) + apply(simp_all only: babs_rsp[OF q]) + apply(auto simp add: Babs_def) + apply (subgoal_tac "x \ Respects R1 \ y \ Respects R1") + apply(metis Babs_def) + apply (simp add: in_respects) + using Quotient_rel[OF q] + by metis + +(* If a user proves that a particular functional relation + is an equivalence this may be useful in regularising *) +lemma babs_reg_eqv: + shows "equivp R \ Babs (Respects R) P = P" + by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp) + +(* 3 lemmas needed for cleaning of quantifiers *) +lemma all_prs: + assumes a: "Quotient R absf repf" + shows "Ball (Respects R) ((absf ---> id) f) = All f" + using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply +by metis + +lemma ex_prs: + assumes a: "Quotient R absf repf" + shows "Bex (Respects R) ((absf ---> id) f) = Ex f" + using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply + by metis + +lemma ex1_prs: + assumes a: "Quotient R absf repf" + shows "((absf ---> id) ---> id) (Bexeq R) f = Ex1 f" +apply simp +apply (subst Bexeq_def) +apply (subst Bex_def) +apply (subst Ex1_def) +apply simp +apply rule + apply (erule conjE)+ + apply (erule_tac exE) + apply (erule conjE) + apply (subgoal_tac "\y. R y y \ f (absf y) \ R x y") + apply (rule_tac x="absf x" in exI) + apply (thin_tac "\x\Respects R. \y\Respects R. f (absf x) \ f (absf y) \ R x y") + apply (simp) + apply rule+ + using a unfolding Quotient_def + apply metis + apply rule+ + apply (erule_tac x="x" in ballE) + apply (erule_tac x="y" in ballE) + apply simp + apply (simp add: in_respects) + apply (simp add: in_respects) +apply (erule_tac exE) + apply rule + apply (rule_tac x="repf x" in exI) + apply (simp only: in_respects) + apply rule + apply (metis Quotient_rel_rep[OF a]) +using a unfolding Quotient_def apply (simp) +apply rule+ +using a unfolding Quotient_def in_respects +apply metis +done + +lemma fun_rel_id: + assumes a: "\x y. R1 x y \ R2 (f x) (g y)" + shows "(R1 ===> R2) f g" + using a by simp + +lemma fun_rel_id_asm: + assumes a: "\x y. R1 x y \ (A \ R2 (f x) (g y))" + shows "A \ (R1 ===> R2) f g" + using a by auto + +lemma quot_rel_rsp: + assumes a: "Quotient R Abs Rep" + shows "(R ===> R ===> op =) R R" + apply(rule fun_rel_id)+ + apply(rule equals_rsp[OF a]) + apply(assumption)+ + done + +lemma o_prs: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + and q3: "Quotient R3 Abs3 Rep3" + shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g" + using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3] + unfolding o_def expand_fun_eq by simp + +lemma o_rsp: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + and q3: "Quotient R3 Abs3 Rep3" + and a1: "(R2 ===> R3) f1 f2" + and a2: "(R1 ===> R2) g1 g2" + shows "(R1 ===> R3) (f1 o g1) (f2 o g2)" + using a1 a2 unfolding o_def expand_fun_eq + by (auto) + +lemma cond_prs: + assumes a: "Quotient R absf repf" + shows "absf (if a then repf b else repf c) = (if a then b else c)" + using a unfolding Quotient_def by auto + +lemma if_prs: + assumes q: "Quotient R Abs Rep" + shows "Abs (If a (Rep b) (Rep c)) = If a b c" +using Quotient_abs_rep[OF q] by auto + +(* q not used *) +lemma if_rsp: + assumes q: "Quotient R Abs Rep" + and a: "a1 = a2" "R b1 b2" "R c1 c2" + shows "R (If a1 b1 c1) (If a2 b2 c2)" +using a by auto + +lemma let_prs: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f" + using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto + +lemma let_rsp: + assumes q1: "Quotient R1 Abs1 Rep1" + and a1: "(R1 ===> R2) f g" + and a2: "R1 x y" + shows "R2 ((Let x f)::'c) ((Let y g)::'c)" + using apply_rsp[OF q1 a1] a2 by auto + + + + +(******************************************) +(* REST OF THE FILE IS UNUSED (until now) *) +(******************************************) + +lemma in_fun: + shows "x \ ((f ---> g) s) = g (f x \ s)" + by (simp add: mem_def) + +lemma respects_thm: + shows "Respects (R1 ===> R2) f = (\x y. R1 x y \ R2 (f x) (f y))" + unfolding Respects_def + by (simp add: expand_fun_eq) + +lemma respects_rep_abs: + assumes a: "Quotient R1 Abs1 Rep1" + and b: "Respects (R1 ===> R2) f" + and c: "R1 x x" + shows "R2 (f (Rep1 (Abs1 x))) (f x)" + using a b[simplified respects_thm] c unfolding Quotient_def + by blast + +lemma respects_mp: + assumes a: "Respects (R1 ===> R2) f" + and b: "R1 x y" + shows "R2 (f x) (f y)" + using a b unfolding Respects_def + by simp + +lemma respects_o: + assumes a: "Respects (R2 ===> R3) f" + and b: "Respects (R1 ===> R2) g" + shows "Respects (R1 ===> R3) (f o g)" + using a b unfolding Respects_def + by simp + +lemma abs_o_rep: + assumes a: "Quotient r absf repf" + shows "absf o repf = id" + apply(rule ext) + apply(simp add: Quotient_abs_rep[OF a]) + done + +lemma eq_comp_r: "op = OO R OO op = \ R" + apply (rule eq_reflection) + apply (rule ext)+ + apply auto + done + +lemma fun_rel_eq_rel: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \ (Respects (R1 ===> R2) g) + \ ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))" + using fun_quotient[OF q1 q2] unfolding Respects_def Quotient_def expand_fun_eq + by blast + +lemma let_babs: + "v \ r \ Let v (Babs r lam) = Let v lam" + by (simp add: Babs_def) + +lemma fun_rel_equals: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + and r1: "Respects (R1 ===> R2) f" + and r2: "Respects (R1 ===> R2) g" + shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\x y. R1 x y \ R2 (f x) (g y))" + apply(rule_tac iffI) + apply(rule)+ + apply (rule apply_rsp'[of "R1" "R2"]) + apply(subst Quotient_rel[OF fun_quotient[OF q1 q2]]) + apply auto + using fun_quotient[OF q1 q2] r1 r2 unfolding Quotient_def Respects_def + apply (metis let_rsp q1) + apply (metis fun_rel_eq_rel let_rsp q1 q2 r2) + using r1 unfolding Respects_def expand_fun_eq + apply(simp (no_asm_use)) + apply(metis Quotient_rel[OF q2] Quotient_rel_rep[OF q1]) + done + +(* ask Peter: fun_rel_IMP used twice *) +lemma fun_rel_IMP2: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + and r1: "Respects (R1 ===> R2) f" + and r2: "Respects (R1 ===> R2) g" + and a: "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g" + shows "R1 x y \ R2 (f x) (g y)" + using q1 q2 r1 r2 a + by (simp add: fun_rel_equals) + +lemma lambda_rep_abs_rsp: + assumes r1: "\r r'. R1 r r' \R1 r (Rep1 (Abs1 r'))" + and r2: "\r r'. R2 r r' \R2 r (Rep2 (Abs2 r'))" + shows "(R1 ===> R2) f1 f2 \ (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))" + using r1 r2 by auto + +(* ask peter what are literal_case *) +(* literal_case_PRS *) +(* literal_case_RSP *) +(* Cez: !f x. literal_case f x = f x *) + +(* We use id_simps which includes id_apply; so these 2 theorems can be removed *) +lemma id_prs: + assumes q: "Quotient R Abs Rep" + shows "Abs (id (Rep e)) = id e" + using Quotient_abs_rep[OF q] by auto + +lemma id_rsp: + assumes q: "Quotient R Abs Rep" + and a: "R e1 e2" + shows "R (id e1) (id e2)" + using a by auto + +end + diff -r c46b6abad24b -r dae99175f584 Quot/QuotMain.thy --- a/Quot/QuotMain.thy Mon Jan 25 17:53:08 2010 +0100 +++ b/Quot/QuotMain.thy Mon Jan 25 18:13:44 2010 +0100 @@ -3,7 +3,7 @@ *) theory QuotMain -imports QuotScript Prove +imports QuotBase uses ("quotient_info.ML") ("quotient_typ.ML") ("quotient_def.ML") @@ -61,11 +61,6 @@ show "Abs (R (Eps (Rep a))) = a" by simp qed -lemma rep_refl: - shows "R (rep a) (rep a)" -unfolding rep_def -by (simp add: equivp[simplified equivp_def]) - lemma lem7: shows "(R x = R y) = (Abs (R x) = Abs (R y))" (is "?LHS = ?RHS") proof - @@ -79,6 +74,12 @@ unfolding abs_def by (simp only: equivp[simplified equivp_def] lem7) +lemma rep_refl: + shows "R (rep a) (rep a)" +unfolding rep_def +by (simp add: equivp[simplified equivp_def]) + + lemma rep_abs_rsp: shows "R f (rep (abs g)) = R f g" and "R (rep (abs g)) f = R g f" diff -r c46b6abad24b -r dae99175f584 Quot/QuotScript.thy --- a/Quot/QuotScript.thy Mon Jan 25 17:53:08 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,682 +0,0 @@ -theory QuotScript -imports Plain ATP_Linkup Predicate -begin - -definition - "equivp E \ \x y. E x y = (E x = E y)" - -definition - "reflp E \ \x. E x x" - -definition - "symp E \ \x y. E x y \ E y x" - -definition - "transp E \ \x y z. E x y \ E y z \ E x z" - -lemma equivp_reflp_symp_transp: - shows "equivp E = (reflp E \ symp E \ transp E)" - unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq - by (blast) - -lemma equivp_reflp: - shows "equivp E \ (\x. E x x)" - by (simp only: equivp_reflp_symp_transp reflp_def) - -lemma equivp_symp: - shows "equivp E \ (\x y. E x y \ E y x)" - by (metis equivp_reflp_symp_transp symp_def) - -lemma equivp_transp: - shows "equivp E \ (\x y z. E x y \ E y z \ E x z)" - by (metis equivp_reflp_symp_transp transp_def) - -lemma equivpI: - assumes "reflp R" "symp R" "transp R" - shows "equivp R" - using assms by (simp add: equivp_reflp_symp_transp) - -lemma eq_imp_rel: - shows "equivp R \ a = b \ R a b" -by (simp add: equivp_reflp) - -definition - "part_equivp E \ (\x. E x x) \ (\x y. E x y = (E x x \ E y y \ (E x = E y)))" - -lemma equivp_IMP_part_equivp: - assumes a: "equivp E" - shows "part_equivp E" - using a unfolding equivp_def part_equivp_def - by auto - - -abbreviation - rel_conj (infixr "OOO" 75) -where - "r1 OOO r2 \ r1 OO r2 OO r1" - -definition - "Quotient E Abs Rep \ (\a. Abs (Rep a) = a) \ - (\a. E (Rep a) (Rep a)) \ - (\r s. E r s = (E r r \ E s s \ (Abs r = Abs s)))" - -(* TEST -lemma - fixes Abs1::"'b \ 'c" - and Abs2::"'a \ 'b" - and Rep1::"'c \ 'b" - and Rep2::"'b \ 'a" - assumes "Quotient R1 Abs1 Rep1" - and "Quotient R2 Abs2 Rep2" - shows "Quotient (f R2 R1) (Abs1 \ Abs2) (Rep2 \ Rep1)" -*) - -lemma Quotient_abs_rep: - assumes a: "Quotient E Abs Rep" - shows "Abs (Rep a) \ a" - using a unfolding Quotient_def - by simp - -lemma Quotient_rep_reflp: - assumes a: "Quotient E Abs Rep" - shows "E (Rep a) (Rep a)" - using a unfolding Quotient_def - by blast - -lemma Quotient_rel: - assumes a: "Quotient E Abs Rep" - shows " E r s = (E r r \ E s s \ (Abs r = Abs s))" - using a unfolding Quotient_def - by blast - -lemma Quotient_rel_rep: - assumes a: "Quotient R Abs Rep" - shows "R (Rep a) (Rep b) \ (a = b)" - apply (rule eq_reflection) - using a unfolding Quotient_def - by metis - -lemma Quotient_rep_abs: - assumes a: "Quotient R Abs Rep" - shows "R r r \ R (Rep (Abs r)) r" - using a unfolding Quotient_def - by blast - -lemma Quotient_rel_abs: - assumes a: "Quotient E Abs Rep" - shows "E r s \ Abs r = Abs s" - using a unfolding Quotient_def - by blast - -lemma identity_equivp: - shows "equivp (op =)" - unfolding equivp_def - by auto - -lemma identity_quotient: - shows "Quotient (op =) id id" - unfolding Quotient_def id_def - by blast - -lemma Quotient_symp: - assumes a: "Quotient E Abs Rep" - shows "symp E" - using a unfolding Quotient_def symp_def - by metis - -lemma Quotient_transp: - assumes a: "Quotient E Abs Rep" - shows "transp E" - using a unfolding Quotient_def transp_def - by metis - -definition - fun_map (infixr "--->" 55) -where -[simp]: "fun_map f g h x = g (h (f x))" - -lemma fun_map_id: - shows "(id ---> id) = id" - by (simp add: expand_fun_eq id_def) - -definition - fun_rel (infixr "===>" 55) -where -[simp]: "fun_rel E1 E2 f g = (\x y. E1 x y \ E2 (f x) (g y))" - -lemma fun_rel_eq: - "(op =) ===> (op =) \ (op =)" - by (rule eq_reflection) (simp add: expand_fun_eq) - -lemma fun_quotient: - assumes q1: "Quotient R1 abs1 rep1" - and q2: "Quotient R2 abs2 rep2" - shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" -proof - - have "\a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a" - apply(simp add: expand_fun_eq) - using q1 q2 - apply(simp add: Quotient_def) - done - moreover - have "\a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)" - apply(auto) - using q1 q2 unfolding Quotient_def - apply(metis) - done - moreover - have "\r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \ (R1 ===> R2) s s \ - (rep1 ---> abs2) r = (rep1 ---> abs2) s)" - apply(auto simp add: expand_fun_eq) - using q1 q2 unfolding Quotient_def - apply(metis) - using q1 q2 unfolding Quotient_def - apply(metis) - using q1 q2 unfolding Quotient_def - apply(metis) - using q1 q2 unfolding Quotient_def - apply(metis) - done - ultimately - show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" - unfolding Quotient_def by blast -qed - -definition - Respects -where - "Respects R x \ (R x x)" - -lemma in_respects: - shows "(x \ Respects R) = R x x" - unfolding mem_def Respects_def by simp - -lemma equals_rsp: - assumes q: "Quotient R Abs Rep" - and a: "R xa xb" "R ya yb" - shows "R xa ya = R xb yb" - using Quotient_symp[OF q] Quotient_transp[OF q] unfolding symp_def transp_def - using a by blast - -lemma lambda_prs: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - shows "(Rep1 ---> Abs2) (\x. Rep2 (f (Abs1 x))) = (\x. f x)" - unfolding expand_fun_eq - using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] - by simp - -lemma lambda_prs1: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - shows "(Rep1 ---> Abs2) (\x. (Abs1 ---> Rep2) f x) = (\x. f x)" - unfolding expand_fun_eq - using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] - by simp - -lemma rep_abs_rsp: - assumes q: "Quotient R Abs Rep" - and a: "R x1 x2" - shows "R x1 (Rep (Abs x2))" - using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]) - -lemma rep_abs_rsp_left: - assumes q: "Quotient R Abs Rep" - and a: "R x1 x2" - shows "R (Rep (Abs x1)) x2" -using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]) - -(* In the following theorem R1 can be instantiated with anything, - but we know some of the types of the Rep and Abs functions; - so by solving Quotient assumptions we can get a unique R1 that - will be provable; which is why we need to use apply_rsp and - not the primed version *) -lemma apply_rsp: - fixes f g::"'a \ 'c" - assumes q: "Quotient R1 Abs1 Rep1" - and a: "(R1 ===> R2) f g" "R1 x y" - shows "R2 (f x) (g y)" - using a by simp - -lemma apply_rsp': - assumes a: "(R1 ===> R2) f g" "R1 x y" - shows "R2 (f x) (g y)" - using a by simp - -(* Set of lemmas for regularisation of ball and bex *) - -lemma ball_reg_eqv: - fixes P :: "'a \ bool" - assumes a: "equivp R" - shows "Ball (Respects R) P = (All P)" - by (metis equivp_def in_respects a) - -lemma bex_reg_eqv: - fixes P :: "'a \ bool" - assumes a: "equivp R" - shows "Bex (Respects R) P = (Ex P)" - by (metis equivp_def in_respects a) - -lemma ball_reg_right: - assumes a: "\x. R x \ P x \ Q x" - shows "All P \ Ball R Q" - by (metis COMBC_def Collect_def Collect_mem_eq a) - -lemma bex_reg_left: - assumes a: "\x. R x \ Q x \ P x" - shows "Bex R Q \ Ex P" - by (metis COMBC_def Collect_def Collect_mem_eq a) - -lemma ball_reg_left: - assumes a: "equivp R" - shows "(\x. (Q x \ P x)) \ Ball (Respects R) Q \ All P" - by (metis equivp_reflp in_respects a) - -lemma bex_reg_right: - assumes a: "equivp R" - shows "(\x. (Q x \ P x)) \ Ex Q \ Bex (Respects R) P" - by (metis equivp_reflp in_respects a) - -lemma ball_reg_eqv_range: - fixes P::"'a \ bool" - and x::"'a" - assumes a: "equivp R2" - shows "(Ball (Respects (R1 ===> R2)) (\f. P (f x)) = All (\f. P (f x)))" - apply(rule iffI) - apply(rule allI) - apply(drule_tac x="\y. f x" in bspec) - apply(simp add: in_respects) - apply(rule impI) - using a equivp_reflp_symp_transp[of "R2"] - apply(simp add: reflp_def) - apply(simp) - apply(simp) - done - -lemma bex_reg_eqv_range: - assumes a: "equivp R2" - shows "(Bex (Respects (R1 ===> R2)) (\f. P (f x)) = Ex (\f. P (f x)))" - apply(auto) - apply(rule_tac x="\y. f x" in bexI) - apply(simp) - apply(simp add: Respects_def in_respects) - apply(rule impI) - using a equivp_reflp_symp_transp[of "R2"] - apply(simp add: reflp_def) - done - -lemma all_reg: - assumes a: "!x :: 'a. (P x --> Q x)" - and b: "All P" - shows "All Q" - using a b by (metis) - -lemma ex_reg: - assumes a: "!x :: 'a. (P x --> Q x)" - and b: "Ex P" - shows "Ex Q" - using a b by (metis) - -lemma ball_reg: - assumes a: "!x :: 'a. (R x --> P x --> Q x)" - and b: "Ball R P" - shows "Ball R Q" - using a b by (metis COMBC_def Collect_def Collect_mem_eq) - -lemma bex_reg: - assumes a: "!x :: 'a. (R x --> P x --> Q x)" - and b: "Bex R P" - shows "Bex R Q" - using a b by (metis COMBC_def Collect_def Collect_mem_eq) - -lemma ball_all_comm: - "(\y. (\x\P. A x y) \ (\x. B x y)) \ ((\x\P. \y. A x y) \ (\x. \y. B x y))" - by auto - -lemma bex_ex_comm: - "((\y. \x. A x y) \ (\y. \x\P. B x y)) \ ((\x. \y. A x y) \ (\x\P. \y. B x y))" - by auto - -(* Bounded abstraction *) -definition - Babs :: "('a \ bool) \ ('a \ 'b) \ 'a \ 'b" -where - "(x \ p) \ (Babs p m x = m x)" - -definition - Bexeq :: "('a \ 'a \ bool) \ ('a \ bool) \ bool" -where - "Bexeq R P \ (\x \ Respects R. P x) \ (\x \ Respects R. \y \ Respects R. ((P x \ P y) \ (R x y)))" - -(* 3 lemmas needed for proving repabs_inj *) -lemma ball_rsp: - assumes a: "(R ===> (op =)) f g" - shows "Ball (Respects R) f = Ball (Respects R) g" - using a by (simp add: Ball_def in_respects) - -lemma bex_rsp: - assumes a: "(R ===> (op =)) f g" - shows "(Bex (Respects R) f = Bex (Respects R) g)" - using a by (simp add: Bex_def in_respects) - -lemma bex1_rsp: - assumes a: "(R ===> (op =)) f g" - shows "(Bex1 (Respects R) f = Bex1 (Respects R) g)" - using a -by (simp add: Ex1_def Bex1_def in_respects) auto - -(* TODO/FIXME: simplify the repetitions in this proof *) -lemma bexeq_rsp: -assumes a: "Quotient R absf repf" -shows "((R ===> op =) ===> op =) (Bexeq R) (Bexeq R)" -apply simp -unfolding Bexeq_def -apply rule -apply rule -apply rule -apply rule -apply (erule conjE)+ -apply (erule bexE) -apply rule -apply (rule_tac x="xa" in bexI) -apply metis -apply metis -apply rule+ -apply (erule_tac x="xb" in ballE) -prefer 2 -apply (metis) -apply (erule_tac x="ya" in ballE) -prefer 2 -apply (metis) -apply (metis in_respects) -apply (erule conjE)+ -apply (erule bexE) -apply rule -apply (rule_tac x="xa" in bexI) -apply metis -apply metis -apply rule+ -apply (erule_tac x="xb" in ballE) -prefer 2 -apply (metis) -apply (erule_tac x="ya" in ballE) -prefer 2 -apply (metis) -apply (metis in_respects) -done - -lemma babs_rsp: - assumes q: "Quotient R1 Abs1 Rep1" - and a: "(R1 ===> R2) f g" - shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)" - apply (auto simp add: Babs_def) - apply (subgoal_tac "x \ Respects R1 \ y \ Respects R1") - using a apply (simp add: Babs_def) - apply (simp add: in_respects) - using Quotient_rel[OF q] - by metis - -lemma babs_prs: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - shows "(Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f)) \ f" - apply(rule eq_reflection) - apply(rule ext) - apply simp - apply (subgoal_tac "Rep1 x \ Respects R1") - apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) - apply (simp add: in_respects Quotient_rel_rep[OF q1]) - done - -lemma babs_simp: - assumes q: "Quotient R1 Abs Rep" - shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)" - apply(rule iffI) - apply(simp_all only: babs_rsp[OF q]) - apply(auto simp add: Babs_def) - apply (subgoal_tac "x \ Respects R1 \ y \ Respects R1") - apply(metis Babs_def) - apply (simp add: in_respects) - using Quotient_rel[OF q] - by metis - -(* If a user proves that a particular functional relation - is an equivalence this may be useful in regularising *) -lemma babs_reg_eqv: - shows "equivp R \ Babs (Respects R) P = P" - by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp) - -(* 3 lemmas needed for cleaning of quantifiers *) -lemma all_prs: - assumes a: "Quotient R absf repf" - shows "Ball (Respects R) ((absf ---> id) f) = All f" - using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply -by metis - -lemma ex_prs: - assumes a: "Quotient R absf repf" - shows "Bex (Respects R) ((absf ---> id) f) = Ex f" - using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply - by metis - -lemma ex1_prs: - assumes a: "Quotient R absf repf" - shows "((absf ---> id) ---> id) (Bexeq R) f = Ex1 f" -apply simp -apply (subst Bexeq_def) -apply (subst Bex_def) -apply (subst Ex1_def) -apply simp -apply rule - apply (erule conjE)+ - apply (erule_tac exE) - apply (erule conjE) - apply (subgoal_tac "\y. R y y \ f (absf y) \ R x y") - apply (rule_tac x="absf x" in exI) - apply (thin_tac "\x\Respects R. \y\Respects R. f (absf x) \ f (absf y) \ R x y") - apply (simp) - apply rule+ - using a unfolding Quotient_def - apply metis - apply rule+ - apply (erule_tac x="x" in ballE) - apply (erule_tac x="y" in ballE) - apply simp - apply (simp add: in_respects) - apply (simp add: in_respects) -apply (erule_tac exE) - apply rule - apply (rule_tac x="repf x" in exI) - apply (simp only: in_respects) - apply rule - apply (metis Quotient_rel_rep[OF a]) -using a unfolding Quotient_def apply (simp) -apply rule+ -using a unfolding Quotient_def in_respects -apply metis -done - -lemma fun_rel_id: - assumes a: "\x y. R1 x y \ R2 (f x) (g y)" - shows "(R1 ===> R2) f g" - using a by simp - -lemma fun_rel_id_asm: - assumes a: "\x y. R1 x y \ (A \ R2 (f x) (g y))" - shows "A \ (R1 ===> R2) f g" - using a by auto - -lemma quot_rel_rsp: - assumes a: "Quotient R Abs Rep" - shows "(R ===> R ===> op =) R R" - apply(rule fun_rel_id)+ - apply(rule equals_rsp[OF a]) - apply(assumption)+ - done - -lemma o_prs: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - and q3: "Quotient R3 Abs3 Rep3" - shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g" - using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3] - unfolding o_def expand_fun_eq by simp - -lemma o_rsp: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - and q3: "Quotient R3 Abs3 Rep3" - and a1: "(R2 ===> R3) f1 f2" - and a2: "(R1 ===> R2) g1 g2" - shows "(R1 ===> R3) (f1 o g1) (f2 o g2)" - using a1 a2 unfolding o_def expand_fun_eq - by (auto) - -lemma cond_prs: - assumes a: "Quotient R absf repf" - shows "absf (if a then repf b else repf c) = (if a then b else c)" - using a unfolding Quotient_def by auto - -lemma if_prs: - assumes q: "Quotient R Abs Rep" - shows "Abs (If a (Rep b) (Rep c)) = If a b c" -using Quotient_abs_rep[OF q] by auto - -(* q not used *) -lemma if_rsp: - assumes q: "Quotient R Abs Rep" - and a: "a1 = a2" "R b1 b2" "R c1 c2" - shows "R (If a1 b1 c1) (If a2 b2 c2)" -using a by auto - -lemma let_prs: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f" - using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto - -lemma let_rsp: - assumes q1: "Quotient R1 Abs1 Rep1" - and a1: "(R1 ===> R2) f g" - and a2: "R1 x y" - shows "R2 ((Let x f)::'c) ((Let y g)::'c)" - using apply_rsp[OF q1 a1] a2 by auto - - - - -(******************************************) -(* REST OF THE FILE IS UNUSED (until now) *) -(******************************************) - -lemma in_fun: - shows "x \ ((f ---> g) s) = g (f x \ s)" - by (simp add: mem_def) - -lemma respects_thm: - shows "Respects (R1 ===> R2) f = (\x y. R1 x y \ R2 (f x) (f y))" - unfolding Respects_def - by (simp add: expand_fun_eq) - -lemma respects_rep_abs: - assumes a: "Quotient R1 Abs1 Rep1" - and b: "Respects (R1 ===> R2) f" - and c: "R1 x x" - shows "R2 (f (Rep1 (Abs1 x))) (f x)" - using a b[simplified respects_thm] c unfolding Quotient_def - by blast - -lemma respects_mp: - assumes a: "Respects (R1 ===> R2) f" - and b: "R1 x y" - shows "R2 (f x) (f y)" - using a b unfolding Respects_def - by simp - -lemma respects_o: - assumes a: "Respects (R2 ===> R3) f" - and b: "Respects (R1 ===> R2) g" - shows "Respects (R1 ===> R3) (f o g)" - using a b unfolding Respects_def - by simp - -lemma abs_o_rep: - assumes a: "Quotient r absf repf" - shows "absf o repf = id" - apply(rule ext) - apply(simp add: Quotient_abs_rep[OF a]) - done - -lemma eq_comp_r: "op = OO R OO op = \ R" - apply (rule eq_reflection) - apply (rule ext)+ - apply auto - done - -lemma fun_rel_eq_rel: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \ (Respects (R1 ===> R2) g) - \ ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))" - using fun_quotient[OF q1 q2] unfolding Respects_def Quotient_def expand_fun_eq - by blast - -lemma let_babs: - "v \ r \ Let v (Babs r lam) = Let v lam" - by (simp add: Babs_def) - -lemma fun_rel_equals: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - and r1: "Respects (R1 ===> R2) f" - and r2: "Respects (R1 ===> R2) g" - shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\x y. R1 x y \ R2 (f x) (g y))" - apply(rule_tac iffI) - apply(rule)+ - apply (rule apply_rsp'[of "R1" "R2"]) - apply(subst Quotient_rel[OF fun_quotient[OF q1 q2]]) - apply auto - using fun_quotient[OF q1 q2] r1 r2 unfolding Quotient_def Respects_def - apply (metis let_rsp q1) - apply (metis fun_rel_eq_rel let_rsp q1 q2 r2) - using r1 unfolding Respects_def expand_fun_eq - apply(simp (no_asm_use)) - apply(metis Quotient_rel[OF q2] Quotient_rel_rep[OF q1]) - done - -(* ask Peter: fun_rel_IMP used twice *) -lemma fun_rel_IMP2: - assumes q1: "Quotient R1 Abs1 Rep1" - and q2: "Quotient R2 Abs2 Rep2" - and r1: "Respects (R1 ===> R2) f" - and r2: "Respects (R1 ===> R2) g" - and a: "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g" - shows "R1 x y \ R2 (f x) (g y)" - using q1 q2 r1 r2 a - by (simp add: fun_rel_equals) - -lemma lambda_rep_abs_rsp: - assumes r1: "\r r'. R1 r r' \R1 r (Rep1 (Abs1 r'))" - and r2: "\r r'. R2 r r' \R2 r (Rep2 (Abs2 r'))" - shows "(R1 ===> R2) f1 f2 \ (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))" - using r1 r2 by auto - -(* ask peter what are literal_case *) -(* literal_case_PRS *) -(* literal_case_RSP *) -(* Cez: !f x. literal_case f x = f x *) - -(* We use id_simps which includes id_apply; so these 2 theorems can be removed *) -lemma id_prs: - assumes q: "Quotient R Abs Rep" - shows "Abs (id (Rep e)) = id e" - using Quotient_abs_rep[OF q] by auto - -lemma id_rsp: - assumes q: "Quotient R Abs Rep" - and a: "R e1 e2" - shows "R (id e1) (id e2)" - using a by auto - -end - diff -r c46b6abad24b -r dae99175f584 Quot/quotient_tacs.ML --- a/Quot/quotient_tacs.ML Mon Jan 25 17:53:08 2010 +0100 +++ b/Quot/quotient_tacs.ML Mon Jan 25 18:13:44 2010 +0100 @@ -526,7 +526,8 @@ fun mk_simps thms = (mk_minimal_ss lthy) addsimps thms addSolver quotient_solver val ss1 = mk_simps (defs @ prs @ @{thms babs_prs all_prs ex_prs ex1_prs}) - val ss2 = mk_simps (@{thms Quotient_abs_rep Quotient_rel_rep ex1_prs} @ ids) + val ss2 = mk_simps (@{thms Quotient_abs_rep[THEN eq_reflection] + Quotient_rel_rep[THEN eq_reflection] ex1_prs} @ ids) in EVERY' [simp_tac ss1, fun_map_tac lthy,