--- a/Nominal/Ex/TypeSchemes.thy Tue May 25 17:09:29 2010 +0200
+++ b/Nominal/Ex/TypeSchemes.thy Tue May 25 17:29:05 2010 +0200
@@ -178,21 +178,15 @@
lemma subst_tyS:
shows "atom x \<sharp> T \<longrightarrow> substs [(x, S)] T = T"
apply (rule strong_induct[of
- "\<lambda>a t. True" "\<lambda>d T. (atom (fst d) \<sharp> T \<longrightarrow> substs [d] T = T)" _ "t" "(x, S)", simplified])
- apply (rule impI)
+ "\<lambda>a t. True" "\<lambda>(x, S) T. (atom x \<sharp> T \<longrightarrow> substs [(x, S)] T = T)" _ "t" "(x, S)", simplified])
+ apply clarify
apply (subst s3)
apply (simp add: fresh_star_def fresh_Cons fresh_Nil)
- apply (case_tac b)
- apply clarify
apply (subst subst_ty)
- apply simp_all
- apply (simp add: fresh_star_prod)
- apply clarify
- apply (thin_tac "fset_to_set (fmap atom fset) \<sharp>* ba")
+ apply (simp_all add: fresh_star_prod_elim)
apply (drule fresh_star_atom)
- apply (unfold fresh_def)
- apply (simp only: ty_tys.fv[simplified ty_tys.supp])
- apply (subgoal_tac "atom aa \<notin> fset_to_set (fmap atom fset)")
+ apply (simp add: fresh_def ty_tys.fv[simplified ty_tys.supp])
+ apply (subgoal_tac "atom a \<notin> fset_to_set (fmap atom fset)")
apply blast
apply (metis supp_finite_atom_set finite_fset)
done