Temporarily repeated fun_map_tac 4 times. Cleaning for all examples work.
--- a/Quot/Examples/FSet.thy Wed Dec 09 00:54:46 2009 +0100
+++ b/Quot/Examples/FSet.thy Wed Dec 09 05:59:49 2009 +0100
@@ -384,9 +384,6 @@
apply(simp)
apply(rule allI)
apply(rule list_eq_refl)
-apply(cleaning)
-apply(simp add: fun_map.simps expand_fun_eq)
-apply(cleaning)
done
lemma ttt3: "(\<lambda>x. ((op @) x ((op #) e []))) = (\<lambda>x. ((op #) e x))"
@@ -396,24 +393,12 @@
(* apply (tactic {* procedure_tac @{context} @{thm ttt3} 1 *}) *)
sorry
-(* Always safe to apply, but not too helpful *)
-lemma app_prs2:
- assumes q1: "Quotient R1 abs1 rep1"
- and q2: "Quotient R2 abs2 rep2"
- shows "((abs1 ---> rep2) ((rep1 ---> abs2) f) (rep1 x)) = rep2 (((rep1 ---> abs2) f) x)"
-unfolding expand_fun_eq
-using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
-by simp
-
lemma hard: "(\<lambda>P. \<lambda>Q. P (Q (x::'a list))) = (\<lambda>P. \<lambda>Q. Q (P (x::'a list)))"
sorry
(* PROBLEM *)
lemma hard_lift: "(\<lambda>P. \<lambda>Q. P (Q (x::'a fset))) = (\<lambda>P. \<lambda>Q. Q (P (x::'a fset)))"
-apply(lifting_setup hard)
-defer
-apply(injection)
-apply(cleaning)
+apply(lifting hard)
sorry
end
--- a/Quot/Examples/IntEx.thy Wed Dec 09 00:54:46 2009 +0100
+++ b/Quot/Examples/IntEx.thy Wed Dec 09 05:59:49 2009 +0100
@@ -321,7 +321,6 @@
lemma "map (\<lambda>x. PLUS x ZERO) l = l"
apply(lifting lam_tst4)
-apply(cleaning)
-sorry
+done
end
--- a/Quot/QuotMain.thy Wed Dec 09 00:54:46 2009 +0100
+++ b/Quot/QuotMain.thy Wed Dec 09 05:59:49 2009 +0100
@@ -1058,13 +1058,15 @@
val thy = ProofContext.theory_of lthy;
val defs = map (Thm.varifyT o symmetric o #def) (qconsts_dest thy)
(* FIXME: why is the Thm.varifyT needed: example where it fails is LamEx *)
- val thms1 = defs @ (prs_rules_get lthy)
- val thms2 = @{thms fun_map.simps Quotient_abs_rep Quotient_rel_rep babs_prs all_prs ex_prs}
- @ (id_simps_get lthy)
+ val thms1 = defs @ (prs_rules_get lthy) @ @{thms babs_prs all_prs ex_prs}
+ val thms2 = @{thms Quotient_abs_rep Quotient_rel_rep} @ (id_simps_get lthy)
fun simps thms = (mk_minimal_ss lthy) addsimps thms addSolver quotient_solver
in
EVERY' [simp_tac (simps thms1),
fun_map_tac lthy,
+ fun_map_tac lthy,
+ fun_map_tac lthy,
+ fun_map_tac lthy,
lambda_prs_tac lthy,
simp_tac (simps thms2),
TRY o rtac refl]
--- a/Quot/QuotScript.thy Wed Dec 09 00:54:46 2009 +0100
+++ b/Quot/QuotScript.thy Wed Dec 09 05:59:49 2009 +0100
@@ -389,6 +389,16 @@
(******************************************)
(* REST OF THE FILE IS UNUSED (until now) *)
(******************************************)
+
+(* Always safe to apply, but not too helpful *)
+lemma app_prs2:
+ assumes q1: "Quotient R1 abs1 rep1"
+ and q2: "Quotient R2 abs2 rep2"
+ shows "((abs1 ---> rep2) ((rep1 ---> abs2) f) (rep1 x)) = rep2 (((rep1 ---> abs2) f) x)"
+unfolding expand_fun_eq
+using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
+by simp
+
lemma Quotient_rel_abs:
assumes a: "Quotient E Abs Rep"
shows "E r s \<Longrightarrow> Abs r = Abs s"