--- a/Nominal/Ex/Classical_Test.thy Tue Jun 28 12:36:34 2011 +0900
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,115 +0,0 @@
-theory Classical
-imports "../Nominal2"
-begin
-
-lemma supp_zero_perm_zero:
- shows "supp (p :: perm) = {} \<longleftrightarrow> p = 0"
- by (metis supp_perm_singleton supp_zero_perm)
-
-lemma permute_atom_list_id:
- shows "p \<bullet> l = l \<longleftrightarrow> supp p \<inter> set l = {}"
- by (induct l) (auto simp add: supp_Nil supp_perm)
-
-lemma permute_length_eq:
- shows "p \<bullet> xs = ys \<Longrightarrow> length xs = length ys"
- by (auto simp add: length_eqvt[symmetric] permute_pure)
-
-lemma Abs_lst_binder_length:
- shows "[xs]lst. T = [ys]lst. S \<Longrightarrow> length xs = length ys"
- by (auto simp add: Abs_eq_iff alphas length_eqvt[symmetric] permute_pure)
-
-lemma Abs_lst_binder_eq:
- shows "Abs_lst l T = Abs_lst l S \<longleftrightarrow> T = S"
- by (rule, simp_all add: Abs_eq_iff2 alphas)
- (metis fresh_star_zero inf_absorb1 permute_atom_list_id supp_perm_eq
- supp_zero_perm_zero)
-
-lemma in_permute_list:
- shows "py \<bullet> p \<bullet> xs = px \<bullet> xs \<Longrightarrow> x \<in> set xs \<Longrightarrow> py \<bullet> p \<bullet> x = px \<bullet> x"
- by (induct xs) auto
-
-lemma obtain_atom_list:
- assumes eq: "p \<bullet> xs = ys"
- and fin: "finite (supp c)"
- and sorts: "map sort_of xs = map sort_of ys"
- shows "\<exists>ds px py. (set ds \<sharp>* c) \<and> (px \<bullet> xs = ds) \<and> (py \<bullet> ys = ds)
- \<and> (supp px - set xs) \<sharp>* c \<and> (supp py - set ys) \<sharp>* c"
- sorry
-
-lemma Abs_lst_fcb2:
- fixes S T :: "'b :: fs"
- and c::"'c::fs"
- assumes e: "[xs]lst. T = [ys]lst. S"
- and sorts: "map sort_of xs = map sort_of ys"
- and fcb1: "\<And>x. x \<in> set xs \<Longrightarrow> x \<sharp> f xs T c"
- and fcb2: "\<And>x. x \<in> set ys \<Longrightarrow> x \<sharp> f ys S c"
- and fresh: "(set xs \<union> set ys) \<sharp>* c"
- and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f xs T c) = f (p \<bullet> xs) (p \<bullet> T) c"
- and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f ys S c) = f (p \<bullet> ys) (p \<bullet> S) c"
- shows "f xs T c = f ys S c"
-proof -
- have fin1: "finite (supp (f xs T c))"
- apply(rule_tac S="supp (xs, T, c)" in supports_finite)
- apply(simp add: supports_def)
- apply(simp add: fresh_def[symmetric])
- apply(clarify)
- apply(subst perm1)
- apply(simp add: supp_swap fresh_star_def)
- apply(simp add: swap_fresh_fresh fresh_Pair)
- apply(simp add: finite_supp)
- done
- have fin2: "finite (supp (f ys S c))"
- apply(rule_tac S="supp (ys, S, c)" in supports_finite)
- apply(simp add: supports_def)
- apply(simp add: fresh_def[symmetric])
- apply(clarify)
- apply(subst perm2)
- apply(simp add: supp_swap fresh_star_def)
- apply(simp add: swap_fresh_fresh fresh_Pair)
- apply(simp add: finite_supp)
- done
- obtain p :: perm where xs_ys: "p \<bullet> xs = ys" using e
- by (auto simp add: Abs_eq_iff alphas)
- obtain ds::"atom list" and px and py
- where fr: "set ds \<sharp>* (xs, ys, S, T, c, f xs T c, f ys S c)"
- and pxd: "px \<bullet> xs = ds" and pyd: "py \<bullet> ys = ds"
- and spx: "(supp px - set xs) \<sharp>* (xs, ys, S, T, c, f xs T c, f ys S c)"
- and spy: "(supp py - set ys) \<sharp>* (xs, ys, S, T, c, f xs T c, f ys S c)"
- using obtain_atom_list[OF xs_ys, of "(xs, ys, S, T, c, f xs T c, f ys S c)"]
- sorts by (auto simp add: finite_supp supp_Pair fin1 fin2)
- have "px \<bullet> (Abs_lst xs T) = py \<bullet> (Abs_lst ys S)"
- apply (subst perm_supp_eq)
- using spx apply (auto simp add: fresh_star_def Abs_fresh_iff)[1]
- apply (subst perm_supp_eq)
- using spy apply (auto simp add: fresh_star_def Abs_fresh_iff)[1]
- by(rule e)
- then have "Abs_lst ds (px \<bullet> T) = Abs_lst ds (py \<bullet> S)" by (simp add: pxd pyd)
- then have eq: "px \<bullet> T = py \<bullet> S" by (simp add: Abs_lst_binder_eq)
- have "f xs T c = px \<bullet> f xs T c"
- apply(rule perm_supp_eq[symmetric])
- using spx unfolding fresh_star_def
- apply (intro ballI)
- by (case_tac "a \<in> set xs") (simp_all add: fcb1)
- also have "... = f (px \<bullet> xs) (px \<bullet> T) c"
- apply(rule perm1)
- using spx fresh unfolding fresh_star_def
- apply (intro ballI)
- by (case_tac "a \<in> set xs") (simp_all add: fcb1)
- also have "... = f (py \<bullet> ys) (py \<bullet> S) c" using eq pxd pyd by simp
- also have "... = py \<bullet> f ys S c"
- apply(rule perm2[symmetric])
- using spy fresh unfolding fresh_star_def
- apply (intro ballI)
- by (case_tac "a \<in> set ys") (simp_all add: fcb1)
- also have "... = f ys S c"
- apply(rule perm_supp_eq)
- using spy unfolding fresh_star_def
- apply (intro ballI)
- by (case_tac "a \<in> set ys") (simp_all add: fcb2)
- finally show ?thesis by simp
-qed
-
-end
-
-
-
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Ex/LetRecB.thy Tue Jun 28 14:01:52 2011 +0100
@@ -0,0 +1,160 @@
+theory LetRecB
+imports "../Nominal2"
+begin
+
+atom_decl name
+
+nominal_datatype let_rec:
+ trm =
+ Var "name"
+| App "trm" "trm"
+| Lam x::"name" t::"trm" bind x in t
+| Let_Rec bp::"bp" t::"trm" bind "bn bp" in bp t
+and bp =
+ Bp "name" "trm"
+binder
+ bn::"bp \<Rightarrow> atom list"
+where
+ "bn (Bp x t) = [atom x]"
+
+thm let_rec.distinct
+thm let_rec.induct
+thm let_rec.exhaust
+thm let_rec.fv_defs
+thm let_rec.bn_defs
+thm let_rec.perm_simps
+thm let_rec.eq_iff
+thm let_rec.fv_bn_eqvt
+thm let_rec.size_eqvt
+
+
+lemma Abs_lst_fcb2:
+ fixes as bs :: "atom list"
+ and x y :: "'b :: fs"
+ and c::"'c::fs"
+ assumes eq: "[as]lst. x = [bs]lst. y"
+ and fcb1: "(set as) \<sharp>* f as x c"
+ and fresh1: "set as \<sharp>* c"
+ and fresh2: "set bs \<sharp>* c"
+ and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
+ and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
+ shows "f as x c = f bs y c"
+proof -
+ have "supp (as, x, c) supports (f as x c)"
+ unfolding supports_def fresh_def[symmetric]
+ by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
+ then have fin1: "finite (supp (f as x c))"
+ by (auto intro: supports_finite simp add: finite_supp)
+ have "supp (bs, y, c) supports (f bs y c)"
+ unfolding supports_def fresh_def[symmetric]
+ by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
+ then have fin2: "finite (supp (f bs y c))"
+ by (auto intro: supports_finite simp add: finite_supp)
+ obtain q::"perm" where
+ fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and
+ fr2: "supp q \<sharp>* Abs_lst as x" and
+ inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)"
+ using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"]
+ fin1 fin2
+ by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
+ have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp
+ also have "\<dots> = Abs_lst as x"
+ by (simp only: fr2 perm_supp_eq)
+ finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp
+ then obtain r::perm where
+ qq1: "q \<bullet> x = r \<bullet> y" and
+ qq2: "q \<bullet> as = r \<bullet> bs" and
+ qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs"
+ apply(drule_tac sym)
+ apply(simp only: Abs_eq_iff2 alphas)
+ apply(erule exE)
+ apply(erule conjE)+
+ apply(drule_tac x="p" in meta_spec)
+ apply(simp add: set_eqvt)
+ apply(blast)
+ done
+ have "(set as) \<sharp>* f as x c" by (rule fcb1)
+ then have "q \<bullet> ((set as) \<sharp>* f as x c)"
+ by (simp add: permute_bool_def)
+ then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
+ apply(simp add: fresh_star_eqvt set_eqvt)
+ apply(subst (asm) perm1)
+ using inc fresh1 fr1
+ apply(auto simp add: fresh_star_def fresh_Pair)
+ done
+ then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
+ then have "r \<bullet> ((set bs) \<sharp>* f bs y c)"
+ apply(simp add: fresh_star_eqvt set_eqvt)
+ apply(subst (asm) perm2[symmetric])
+ using qq3 fresh2 fr1
+ apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
+ done
+ then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def)
+ have "f as x c = q \<bullet> (f as x c)"
+ apply(rule perm_supp_eq[symmetric])
+ using inc fcb1 fr1 by (auto simp add: fresh_star_def)
+ also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c"
+ apply(rule perm1)
+ using inc fresh1 fr1 by (auto simp add: fresh_star_def)
+ also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
+ also have "\<dots> = r \<bullet> (f bs y c)"
+ apply(rule perm2[symmetric])
+ using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
+ also have "... = f bs y c"
+ apply(rule perm_supp_eq)
+ using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
+ finally show ?thesis by simp
+qed
+
+
+lemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)"
+ by (simp add: permute_pure)
+
+nominal_primrec
+ height_trm :: "trm \<Rightarrow> nat"
+and height_bp :: "bp \<Rightarrow> nat"
+where
+ "height_trm (Var x) = 1"
+| "height_trm (App l r) = max (height_trm l) (height_trm r)"
+| "height_trm (Lam v b) = 1 + (height_trm b)"
+| "height_trm (Let_Rec bp b) = max (height_bp bp) (height_trm b)"
+| "height_bp (Bp v t) = height_trm t"
+ --"eqvt"
+ apply (simp only: eqvt_def height_trm_height_bp_graph_def)
+ apply (rule, perm_simp, rule, rule TrueI)
+ --"completeness"
+ apply (case_tac x)
+ apply (case_tac a rule: let_rec.exhaust(1))
+ apply (auto)[4]
+ apply (case_tac b rule: let_rec.exhaust(2))
+ apply blast
+ apply(simp_all)
+ apply (erule_tac c="()" in Abs_lst_fcb2)
+ apply (simp_all add: fresh_star_def pure_fresh)[3]
+ apply (simp add: eqvt_at_def)
+ apply (simp add: eqvt_at_def)
+ --"HERE"
+ thm Abs_lst_fcb2
+ apply(rule Abs_lst_fcb2)
+ --" does not fit the assumption "
+
+ apply (drule_tac c="()" in Abs_lst_fcb2)
+ prefer 6
+ apply(assumption)
+ apply (drule_tac c="()" in Abs_lst_fcb2)
+ apply (simp add: Abs_eq_iff2)
+ apply (simp add: alphas)
+ apply clarify
+ apply (rule trans)
+ apply(rule_tac p="p" in supp_perm_eq[symmetric])
+ apply (simp add: pure_supp fresh_star_def)
+ apply (simp only: eqvts)
+ apply (simp add: eqvt_at_def)
+ done
+
+termination by lexicographic_order
+
+end
+
+
+