--- a/Slides/Slides2.thy Sun Jul 11 00:58:54 2010 +0100
+++ b/Slides/Slides2.thy Sun Jul 11 21:18:02 2010 +0100
@@ -44,7 +44,7 @@
terms involving binders (e.g.~lambda calculus, variable convention)\medskip
\item<2-> \ldots mainly used to find errors in my own
- (published) paper proofs and in that of others \alert{\bf ;o)}
+ (published) paper proofs and in those of others \alert{\bf ;o)}
\end{itemize}
\end{frame}}
@@ -57,7 +57,7 @@
\begin{frame}<1-3>[c]
\frametitle{Nominal Theory}
- by Pitts; at its core are:\bigskip
+ \ldots by Pitts; at its core are:\bigskip
\begin{itemize}
\item sorted atoms and
@@ -137,6 +137,8 @@
\item<2-> $\text{[]}\,\act\, x = x$
\item<2-> $(\pi_1 @ \pi_2) \,\act \, x = \pi_1 \,\act\,(\pi_2 \,\act\, x)$
\item<2-> if $\pi_1 \sim \pi_2$ then $\pi_1 \,\act\, x = \pi_2 \,\act\, x$
+ \item<2-> if $\pi_1$, $\pi_2$ have dif$\!$f.~type, then
+ $\pi_1 \act (\pi_2 \act x) = \pi_2 \act (\pi_1 \act x)$
\end{itemize}
\end{itemize}
@@ -161,7 +163,7 @@
text_raw {*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
- \begin{frame}<1-5>
+ \begin{frame}<1-4>
\frametitle{A Better Way}
*}
datatype atom = Atom string nat
@@ -169,27 +171,27 @@
text_raw {*
\mbox{}\bigskip
\begin{itemize}
- \item<3-> permutations are (restricted) bijective functions from @{text "atom \<Rightarrow> atom"}
+ \item<2-> permutations are (restricted) bijective functions from @{text "atom \<Rightarrow> atom"}
\begin{itemize}
\item sort-respecting \hspace{5mm}($\,\forall a.\;\text{sort}(\pi a) = \text{sort}(a)$)
\item finite domain \hspace{5mm}($\text{finite} \{a.\;\pi a \not= a\}$)
\end{itemize}\medskip
- \item<4-> \alert{What about {\bf swappings}?}
+ \item<3-> \alert{What about {\bf swappings}?}
\small
\[
\begin{array}{l@ {\hspace{1mm}}l}
(a\;b) \dn & \text{if}\;\text{sort}(a) = \text{sort}(b)\\
& \text{then}\;\lambda c. \text{if}\;a = c\;\text{then}\;b\;\text{else}\;
\text{if}\;b = c\;\text{then}\;a\;\text{else}\;c\\
- & \text{else}\;\only<4>{\raisebox{-5mm}{\textcolor{red}{\huge\bf $?$}}}
- \only<5->{\text{\alert{\bf id}}}
+ & \text{else}\;\only<3>{\raisebox{-5mm}{\textcolor{red}{\huge\bf $?$}}}
+ \only<4->{\text{\alert{\bf id}}}
\end{array}
\]
\end{itemize}
- \only<3>{
+ \only<2>{
\begin{textblock}{7}(4,11)
@{text "_ \<bullet> _ :: perm \<Rightarrow> \<beta> \<Rightarrow> \<beta>"}
\end{textblock}}
@@ -270,7 +272,7 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1-2>
- \frametitle{Solution}
+ \frametitle{Our Solution}
\begin{itemize}
@@ -408,12 +410,12 @@
\begin{itemize}
\item the formalised version of the nominal theory is now much nicer to
- work with (sorts are occasionally explicit, \alert{@{text "\<forall>\<pi>. P"}})\medskip
+ work with (sorts are occasionally explicit, \alert{$\forall \pi. P$})\medskip
\item permutations: ``be as abstract as you can'' (group\_add is a slight oddity)\medskip
- \item crucial insight: allow sort-disrespecting swappings%
- \onslide<2->{ just define them as the identity}%
+ \item the crucial insight: allow sort-disrespecting swappings%
+ \onslide<2->{ \ldots just define them as the identity}\\%
\onslide<3->{ (a referee called this a \alert{``hack''})}\medskip
\item<4-> there will be a hands-on tutorial about Nominal Isabelle at \alert{POPL'11}
--- a/Slides/Slides3.thy Sun Jul 11 00:58:54 2010 +0100
+++ b/Slides/Slides3.thy Sun Jul 11 21:18:02 2010 +0100
@@ -9,24 +9,54 @@
(*>*)
+text_raw {*
+ \renewcommand{\slidecaption}{UNIF, Edinburgh, 14.~July 2010}
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ \mode<presentation>{
+ \begin{frame}<1>[c]
+ \frametitle{Quiz}
+
+ Assuming that \smath{a} and \smath{b} are distinct variables,\\
+ is it possible to find $\lambda$-terms \smath{M_1} to \smath{M_7}
+ that make the following pairs \alert{$\alpha$-equivalent}?
+
+ \begin{tabular}{@ {\hspace{14mm}}p{12cm}}
+ \begin{itemize}
+ \item \smath{\lambda a.\lambda b. (M_1\,b)\;} and
+ \smath{\lambda b.\lambda a. (a\,M_1)\;}
+
+ \item \smath{\lambda a.\lambda b. (M_2\,b)\;} and
+ \smath{\lambda b.\lambda a. (a\,M_3)\;}
+
+ \item \smath{\lambda a.\lambda b. (b\,M_4)\;} and
+ \smath{\lambda b.\lambda a. (a\,M_5)\;}
+
+ \item \smath{\lambda a.\lambda b. (b\,M_6)\;} and
+ \smath{\lambda a.\lambda a. (a\,M_7)\;}
+ \end{itemize}
+ \end{tabular}
+
+ If there is one solution for a pair, can you describe all its solutions?
+
+ \end{frame}}
+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+*}
text_raw {*
- \renewcommand{\slidecaption}{Cambridge, 8.~June 2010}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[t]
\frametitle{%
\begin{tabular}{@ {\hspace{-3mm}}c@ {}}
\\
- \huge Nominal 2\\[-2mm]
- \large Or, How to Reason Conveniently with\\[-5mm]
- \large General Bindings in Isabelle/HOL\\[5mm]
+ \huge Nominal Unification\\[-2mm]
+ \Large Hitting a Sweet Spot\\[5mm]
\end{tabular}}
\begin{center}
Christian Urban
\end{center}
\begin{center}
- joint work with {\bf Cezary Kaliszyk}\\[0mm]
+ \small initial work with Andy Pitts and Jamie Gabbay\\[0mm]
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%