Move lst_fcb to Nominal2_Abs
authorCezary Kaliszyk <kaliszyk@in.tum.de>
Mon, 20 Jun 2011 09:59:18 +0900
changeset 2875 ab2aded5f7c9
parent 2874 1628e47fa57c
child 2876 99583bd6a7b2
Move lst_fcb to Nominal2_Abs
Nominal/Ex/Let.thy
Nominal/Nominal2_Abs.thy
--- a/Nominal/Ex/Let.thy	Mon Jun 20 09:38:57 2011 +0900
+++ b/Nominal/Ex/Let.thy	Mon Jun 20 09:59:18 2011 +0900
@@ -90,33 +90,6 @@
 
 lemmas alpha_bn_inducts = alpha_bn_inducts_raw[quot_lifted]
 
-lemma Abs_lst_fcb:
-  fixes xs ys :: "'a :: fs"
-    and S T :: "'b :: fs"
-  assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)"
-    and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T"
-    and f2: "\<And>x. supp T - set (ba xs) = supp S - set (ba ys) \<Longrightarrow> x \<in> set (ba ys) \<Longrightarrow> x \<sharp> f xs T"
-    and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> set (ba xs) \<union> set (ba ys) \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
-  shows "f xs T = f ys S"
-  using e apply -
-  apply(subst (asm) Abs_eq_iff2)
-  apply(simp add: alphas)
-  apply(elim exE conjE)
-  apply(rule trans)
-  apply(rule_tac p="p" in supp_perm_eq[symmetric])
-  apply(rule fresh_star_supp_conv)
-  apply(drule fresh_star_perm_set_conv)
-  apply(rule finite_Diff)
-  apply(rule finite_supp)
-  apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T")
-  apply(metis Un_absorb2 fresh_star_Un)
-  apply(subst fresh_star_Un)
-  apply(rule conjI)
-  apply(simp add: fresh_star_def f1)
-  apply(simp add: fresh_star_def f2)
-  apply(simp add: eqv)
-  done
-
 lemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)"
   by (simp add: permute_pure)
 
--- a/Nominal/Nominal2_Abs.thy	Mon Jun 20 09:38:57 2011 +0900
+++ b/Nominal/Nominal2_Abs.thy	Mon Jun 20 09:59:18 2011 +0900
@@ -1036,6 +1036,33 @@
   apply(simp add: Abs1_eq_iff[OF s s])
   done
 
+lemma Abs_lst_fcb:
+  fixes xs ys :: "'a :: fs"
+    and S T :: "'b :: fs"
+  assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)"
+    and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T"
+    and f2: "\<And>x. supp T - set (ba xs) = supp S - set (ba ys) \<Longrightarrow> x \<in> set (ba ys) \<Longrightarrow> x \<sharp> f xs T"
+    and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> set (ba xs) \<union> set (ba ys) \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
+  shows "f xs T = f ys S"
+  using e apply -
+  apply(subst (asm) Abs_eq_iff2)
+  apply(simp add: alphas)
+  apply(elim exE conjE)
+  apply(rule trans)
+  apply(rule_tac p="p" in supp_perm_eq[symmetric])
+  apply(rule fresh_star_supp_conv)
+  apply(drule fresh_star_perm_set_conv)
+  apply(rule finite_Diff)
+  apply(rule finite_supp)
+  apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T")
+  apply(metis Un_absorb2 fresh_star_Un)
+  apply(subst fresh_star_Un)
+  apply(rule conjI)
+  apply(simp add: fresh_star_def f1)
+  apply(simp add: fresh_star_def f2)
+  apply(simp add: eqv)
+  done
+
 lemma Abs_res_fcb:
   fixes xs ys :: "('a :: at_base) set"
     and S T :: "'b :: fs"