Nominal/Ex/Let.thy
changeset 2875 ab2aded5f7c9
parent 2872 eda5b21622f3
child 2921 6b496f69f76c
equal deleted inserted replaced
2874:1628e47fa57c 2875:ab2aded5f7c9
    88         (ACons_raw namea trm_rawa assn_rawa)\<rbrakk> \<Longrightarrow> P3 a b"
    88         (ACons_raw namea trm_rawa assn_rawa)\<rbrakk> \<Longrightarrow> P3 a b"
    89   by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\<lambda>x y. True" _ "\<lambda>x y. True", simplified]) auto
    89   by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\<lambda>x y. True" _ "\<lambda>x y. True", simplified]) auto
    90 
    90 
    91 lemmas alpha_bn_inducts = alpha_bn_inducts_raw[quot_lifted]
    91 lemmas alpha_bn_inducts = alpha_bn_inducts_raw[quot_lifted]
    92 
    92 
    93 lemma Abs_lst_fcb:
       
    94   fixes xs ys :: "'a :: fs"
       
    95     and S T :: "'b :: fs"
       
    96   assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)"
       
    97     and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T"
       
    98     and f2: "\<And>x. supp T - set (ba xs) = supp S - set (ba ys) \<Longrightarrow> x \<in> set (ba ys) \<Longrightarrow> x \<sharp> f xs T"
       
    99     and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> set (ba xs) \<union> set (ba ys) \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
       
   100   shows "f xs T = f ys S"
       
   101   using e apply -
       
   102   apply(subst (asm) Abs_eq_iff2)
       
   103   apply(simp add: alphas)
       
   104   apply(elim exE conjE)
       
   105   apply(rule trans)
       
   106   apply(rule_tac p="p" in supp_perm_eq[symmetric])
       
   107   apply(rule fresh_star_supp_conv)
       
   108   apply(drule fresh_star_perm_set_conv)
       
   109   apply(rule finite_Diff)
       
   110   apply(rule finite_supp)
       
   111   apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T")
       
   112   apply(metis Un_absorb2 fresh_star_Un)
       
   113   apply(subst fresh_star_Un)
       
   114   apply(rule conjI)
       
   115   apply(simp add: fresh_star_def f1)
       
   116   apply(simp add: fresh_star_def f2)
       
   117   apply(simp add: eqv)
       
   118   done
       
   119 
       
   120 lemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)"
    93 lemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)"
   121   by (simp add: permute_pure)
    94   by (simp add: permute_pure)
   122 
    95 
   123 (* TODO: should be provided by nominal *)
    96 (* TODO: should be provided by nominal *)
   124 lemmas [eqvt] = trm_assn.fv_bn_eqvt
    97 lemmas [eqvt] = trm_assn.fv_bn_eqvt