Trying to find a compose lemma for 2 arguments.
--- a/Nominal/Abs.thy Wed Mar 17 12:23:04 2010 +0100
+++ b/Nominal/Abs.thy Wed Mar 17 17:09:01 2010 +0100
@@ -74,7 +74,7 @@
and a: "\<And>pi t s. (R t s \<Longrightarrow> R (pi \<bullet> t) (pi \<bullet> s))"
shows "(ab, s) \<approx>gen R f (- pi) (aa, t)"
using b apply -
- apply(simp add: alpha_gen.simps)
+ apply(simp add: alpha_gen)
apply(erule conjE)+
apply(rule conjI)
apply(simp add: fresh_star_def fresh_minus_perm)
@@ -86,6 +86,35 @@
apply assumption
done
+lemma alpha_gen_compose_sym2:
+ assumes a: "(aa, (t1, t2)) \<approx>gen (\<lambda>(x11, x12) (x21, x22). R1 x11 x21 \<and> R1 x21 x11 \<and> R2 x12 x22 \<and> R2 x22 x12)
+ (\<lambda>(b, a). fb b \<union> fa a) pi (ab, (s1, s2))"
+ and r1: "\<And>pi t s. R1 t s \<Longrightarrow> R1 (pi \<bullet> t) (pi \<bullet> s)"
+ and r2: "\<And>pi t s. R2 t s \<Longrightarrow> R2 (pi \<bullet> t) (pi \<bullet> s)"
+ shows "(ab, (s1, s2)) \<approx>gen
+ (\<lambda>x1 x2. (\<lambda>(a, b) (d, c). R1 a d \<and> R2 b c) x1 x2 \<and> (\<lambda>(a, b) (d, c). R1 a d \<and> R2 b c) x2 x1)
+ (\<lambda>(b, a). fb b \<union> fa a) (- pi) (aa, (t1, t2))"
+ using a
+apply(simp add: alpha_gen)
+apply clarify
+apply (rule conjI)
+ apply(simp add: fresh_star_def fresh_minus_perm)
+apply (rule conjI)
+apply (rotate_tac 3)
+apply (drule_tac pi="- pi" in r1)
+apply simp
+apply (rule conjI)
+apply (rotate_tac -1)
+apply (drule_tac pi="- pi" in r2)
+apply simp
+apply (rule conjI)
+apply (drule_tac pi="- pi" in r1)
+apply simp
+apply (rule conjI)
+apply (drule_tac pi="- pi" in r2)
+apply simp_all
+done
+
lemma alpha_gen_compose_trans:
fixes pi pia
assumes b: "(aa, t) \<approx>gen (\<lambda>x1 x2. R x1 x2 \<and> (\<forall>x. R x2 x \<longrightarrow> R x1 x)) f pi (ab, ta)"
--- a/Nominal/Fv.thy Wed Mar 17 12:23:04 2010 +0100
+++ b/Nominal/Fv.thy Wed Mar 17 17:09:01 2010 +0100
@@ -591,7 +591,7 @@
split_conjs THEN_ALL_NEW REPEAT o rtac @{thm exI[of _ "0 :: perm"]}
THEN_ALL_NEW split_conjs THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps
@{thms alpha_gen fresh_star_def fresh_zero_perm permute_zero ball_triv
- add_0_left supp_zero_perm Int_empty_left})
+ add_0_left supp_zero_perm Int_empty_left split_conv})
*}