equal
deleted
inserted
replaced
589 rtac induct THEN_ALL_NEW |
589 rtac induct THEN_ALL_NEW |
590 simp_tac ((mk_minimal_ss ctxt) addsimps inj) THEN_ALL_NEW |
590 simp_tac ((mk_minimal_ss ctxt) addsimps inj) THEN_ALL_NEW |
591 split_conjs THEN_ALL_NEW REPEAT o rtac @{thm exI[of _ "0 :: perm"]} |
591 split_conjs THEN_ALL_NEW REPEAT o rtac @{thm exI[of _ "0 :: perm"]} |
592 THEN_ALL_NEW split_conjs THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps |
592 THEN_ALL_NEW split_conjs THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps |
593 @{thms alpha_gen fresh_star_def fresh_zero_perm permute_zero ball_triv |
593 @{thms alpha_gen fresh_star_def fresh_zero_perm permute_zero ball_triv |
594 add_0_left supp_zero_perm Int_empty_left}) |
594 add_0_left supp_zero_perm Int_empty_left split_conv}) |
595 *} |
595 *} |
596 |
596 |
597 |
597 |
598 lemma exi_neg: "\<exists>(pi :: perm). P pi \<Longrightarrow> (\<And>(p :: perm). P p \<Longrightarrow> Q (- p)) \<Longrightarrow> \<exists>pi. Q pi" |
598 lemma exi_neg: "\<exists>(pi :: perm). P pi \<Longrightarrow> (\<And>(p :: perm). P p \<Longrightarrow> Q (- p)) \<Longrightarrow> \<exists>pi. Q pi" |
599 apply (erule exE) |
599 apply (erule exE) |