Converted 'thm' to a lemma.
--- a/Nominal/FSet.thy Thu Apr 22 12:33:51 2010 +0200
+++ b/Nominal/FSet.thy Thu Apr 22 12:42:15 2010 +0200
@@ -1070,7 +1070,8 @@
"(finsert x xs |\<subseteq>| ys) = (x |\<in>| ys \<and> xs |\<subseteq>| ys)"
by (lifting sub_list_cons)
-thm sub_list_def[simplified memb_def[symmetric], quot_lifted, no_vars]
+lemma "xs |\<subseteq>| ys \<equiv> \<forall>x. x |\<in>| xs \<longrightarrow> x |\<in>| ys"
+ by (lifting sub_list_def[simplified memb_def[symmetric]])
lemma fsubset_fin: "xs |\<subseteq>| ys = (\<forall>x. x |\<in>| xs \<longrightarrow> x |\<in>| ys)"
by (rule meta_eq_to_obj_eq)