# HG changeset patch # User Cezary Kaliszyk # Date 1271932935 -7200 # Node ID 99367d481f7859b2fd096894e47b5a97ccc302cd # Parent 266abc3ee228258745d4b71c010f79e674f6752f Converted 'thm' to a lemma. diff -r 266abc3ee228 -r 99367d481f78 Nominal/FSet.thy --- a/Nominal/FSet.thy Thu Apr 22 12:33:51 2010 +0200 +++ b/Nominal/FSet.thy Thu Apr 22 12:42:15 2010 +0200 @@ -1070,7 +1070,8 @@ "(finsert x xs |\| ys) = (x |\| ys \ xs |\| ys)" by (lifting sub_list_cons) -thm sub_list_def[simplified memb_def[symmetric], quot_lifted, no_vars] +lemma "xs |\| ys \ \x. x |\| xs \ x |\| ys" + by (lifting sub_list_def[simplified memb_def[symmetric]]) lemma fsubset_fin: "xs |\| ys = (\x. x |\| xs \ x |\| ys)" by (rule meta_eq_to_obj_eq)