Showed Let substitution.
--- a/Nominal/ExLet.thy Thu Mar 25 11:01:22 2010 +0100
+++ b/Nominal/ExLet.thy Thu Mar 25 11:10:15 2010 +0100
@@ -49,9 +49,11 @@
"permute_bn (p + q) a = permute_bn p (permute_bn q a)"
oops
-lemma Lt_subst:
- "supp (Abs (bn lts) trm) \<sharp>* q \<Longrightarrow> (Lt lts trm) = Lt (permute_bn q lts) (q \<bullet> trm)"
- sorry
+lemma permute_bn_alpha_bn: "alpha_bn lts (permute_bn q lts)"
+ apply(induct lts rule: trm_lts.inducts(2))
+ apply(rule TrueI)
+ apply(simp_all add:test eqvts trm_lts.eq_iff)
+ done
lemma perm_bn:
"p \<bullet> bn l = bn(permute_bn p l)"
@@ -60,6 +62,24 @@
apply(simp_all add:test eqvts)
done
+lemma Lt_subst:
+ "supp (Abs (bn lts) trm) \<sharp>* q \<Longrightarrow> (Lt lts trm) = Lt (permute_bn q lts) (q \<bullet> trm)"
+ apply (simp only: trm_lts.eq_iff)
+ apply (rule_tac x="q" in exI)
+ apply (simp add: alphas)
+ apply (simp add: permute_bn_alpha_bn)
+ apply (simp add: perm_bn[symmetric])
+ apply (simp add: eqvts[symmetric])
+ apply (simp add: supp_Abs)
+ apply (simp add: trm_lts.supp)
+ apply (rule supp_perm_eq[symmetric])
+ apply (subst supp_finite_atom_set)
+ apply (rule finite_Diff)
+ apply (simp add: finite_supp)
+ apply (assumption)
+ done
+
+
lemma fin_bn:
"finite (bn l)"
apply(induct l rule: trm_lts.inducts(2))