linked versions - instead of copies
authorChristian Urban <urbanc@in.tum.de>
Thu, 04 Feb 2010 15:16:34 +0100
changeset 1061 8de99358f309
parent 1060 d5d887bb986a
child 1062 dfea9e739231
linked versions - instead of copies
Quot/Nominal/Nominal2_Atoms.thy
Quot/Nominal/Nominal2_Base.thy
Quot/Nominal/Nominal2_Eqvt.thy
Quot/Nominal/Nominal2_Supp.thy
--- a/Quot/Nominal/Nominal2_Atoms.thy	Thu Feb 04 14:55:52 2010 +0100
+++ b/Quot/Nominal/Nominal2_Atoms.thy	Thu Feb 04 15:16:34 2010 +0100
@@ -1,221 +1,1 @@
-(*  Title:      Nominal2_Atoms
-    Authors:    Brian Huffman, Christian Urban
-
-    Definitions for concrete atom types. 
-*)
-theory Nominal2_Atoms
-imports Nominal2_Base
-uses ("atom_decl.ML")
-begin
-
-section {* Concrete atom types *}
-
-text {*
-  Class @{text at_base} allows types containing multiple sorts of atoms.
-  Class @{text at} only allows types with a single sort.
-*}
-
-class at_base = pt +
-  fixes atom :: "'a \<Rightarrow> atom"
-  assumes atom_eq_iff [simp]: "atom a = atom b \<longleftrightarrow> a = b"
-  assumes atom_eqvt: "p \<bullet> (atom a) = atom (p \<bullet> a)"
-
-class at = at_base +
-  assumes sort_of_atom_eq [simp]: "sort_of (atom a) = sort_of (atom b)"
-
-instance at < at_base ..
-
-lemma supp_at_base: 
-  fixes a::"'a::at_base"
-  shows "supp a = {atom a}"
-  by (simp add: supp_atom [symmetric] supp_def atom_eqvt)
-
-lemma fresh_at: 
-  shows "a \<sharp> b \<longleftrightarrow> a \<noteq> atom b"
-  unfolding fresh_def by (simp add: supp_at_base)
-
-instance at_base < fs
-proof qed (simp add: supp_at_base)
-
-
-lemma at_base_infinite [simp]:
-  shows "infinite (UNIV :: 'a::at_base set)" (is "infinite ?U")
-proof
-  obtain a :: 'a where "True" by auto
-  assume "finite ?U"
-  hence "finite (atom ` ?U)"
-    by (rule finite_imageI)
-  then obtain b where b: "b \<notin> atom ` ?U" "sort_of b = sort_of (atom a)"
-    by (rule obtain_atom)
-  from b(2) have "b = atom ((atom a \<rightleftharpoons> b) \<bullet> a)"
-    unfolding atom_eqvt [symmetric]
-    by (simp add: swap_atom)
-  hence "b \<in> atom ` ?U" by simp
-  with b(1) show "False" by simp
-qed
-
-lemma swap_at_base_simps [simp]:
-  fixes x y::"'a::at_base"
-  shows "sort_of (atom x) = sort_of (atom y) \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> x = y"
-  and   "sort_of (atom x) = sort_of (atom y) \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> y = x"
-  and   "atom x \<noteq> a \<Longrightarrow> atom x \<noteq> b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x"
-  unfolding atom_eq_iff [symmetric]
-  unfolding atom_eqvt [symmetric]
-  by simp_all
-
-lemma obtain_at_base:
-  assumes X: "finite X"
-  obtains a::"'a::at_base" where "atom a \<notin> X"
-proof -
-  have "inj (atom :: 'a \<Rightarrow> atom)"
-    by (simp add: inj_on_def)
-  with X have "finite (atom -` X :: 'a set)"
-    by (rule finite_vimageI)
-  with at_base_infinite have "atom -` X \<noteq> (UNIV :: 'a set)"
-    by auto
-  then obtain a :: 'a where "atom a \<notin> X"
-    by auto
-  thus ?thesis ..
-qed
-
-
-section {* A swapping operation for concrete atoms *}
-  
-definition
-  flip :: "'a::at_base \<Rightarrow> 'a \<Rightarrow> perm" ("'(_ \<leftrightarrow> _')")
-where
-  "(a \<leftrightarrow> b) = (atom a \<rightleftharpoons> atom b)"
-
-lemma flip_self [simp]: "(a \<leftrightarrow> a) = 0"
-  unfolding flip_def by (rule swap_self)
-
-lemma flip_commute: "(a \<leftrightarrow> b) = (b \<leftrightarrow> a)"
-  unfolding flip_def by (rule swap_commute)
-
-lemma minus_flip [simp]: "- (a \<leftrightarrow> b) = (a \<leftrightarrow> b)"
-  unfolding flip_def by (rule minus_swap)
-
-lemma add_flip_cancel: "(a \<leftrightarrow> b) + (a \<leftrightarrow> b) = 0"
-  unfolding flip_def by (rule swap_cancel)
-
-lemma permute_flip_cancel [simp]: "(a \<leftrightarrow> b) \<bullet> (a \<leftrightarrow> b) \<bullet> x = x"
-  unfolding permute_plus [symmetric] add_flip_cancel by simp
-
-lemma permute_flip_cancel2 [simp]: "(a \<leftrightarrow> b) \<bullet> (b \<leftrightarrow> a) \<bullet> x = x"
-  by (simp add: flip_commute)
-
-lemma flip_eqvt: 
-  fixes a b c::"'a::at_base"
-  shows "p \<bullet> (a \<leftrightarrow> b) = (p \<bullet> a \<leftrightarrow> p \<bullet> b)"
-  unfolding flip_def
-  by (simp add: swap_eqvt atom_eqvt)
-
-lemma flip_at_base_simps [simp]:
-  shows "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> a = b"
-  and   "sort_of (atom a) = sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> b = a"
-  and   "\<lbrakk>a \<noteq> c; b \<noteq> c\<rbrakk> \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> c = c"
-  and   "sort_of (atom a) \<noteq> sort_of (atom b) \<Longrightarrow> (a \<leftrightarrow> b) \<bullet> x = x"
-  unfolding flip_def
-  unfolding atom_eq_iff [symmetric]
-  unfolding atom_eqvt [symmetric]
-  by simp_all
-
-text {* the following two lemmas do not hold for at_base, 
-  only for single sort atoms from at *}
-
-lemma permute_flip_at:
-  fixes a b c::"'a::at"
-  shows "(a \<leftrightarrow> b) \<bullet> c = (if c = a then b else if c = b then a else c)"
-  unfolding flip_def
-  apply (rule atom_eq_iff [THEN iffD1])
-  apply (subst atom_eqvt [symmetric])
-  apply (simp add: swap_atom)
-  done
-
-lemma flip_at_simps [simp]:
-  fixes a b::"'a::at"
-  shows "(a \<leftrightarrow> b) \<bullet> a = b" 
-  and   "(a \<leftrightarrow> b) \<bullet> b = a"
-  unfolding permute_flip_at by simp_all
-
-
-subsection {* Syntax for coercing at-elements to the atom-type *}
-
-syntax
-  "_atom_constrain" :: "logic \<Rightarrow> type \<Rightarrow> logic" ("_:::_" [4, 0] 3)
-
-translations
-  "_atom_constrain a t" => "atom (_constrain a t)"
-
-
-subsection {* A lemma for proving instances of class @{text at}. *}
-
-setup {* Sign.add_const_constraint (@{const_name "permute"}, NONE) *}
-setup {* Sign.add_const_constraint (@{const_name "atom"}, NONE) *}
-
-text {*
-  New atom types are defined as subtypes of @{typ atom}.
-*}
-
-lemma exists_eq_sort: 
-  shows "\<exists>a. a \<in> {a. sort_of a = s}"
-  by (rule_tac x="Atom s 0" in exI, simp)
-
-lemma at_base_class:
-  fixes s :: atom_sort
-  fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
-  assumes type: "type_definition Rep Abs {a. P (sort_of a)}"
-  assumes atom_def: "\<And>a. atom a = Rep a"
-  assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
-  shows "OFCLASS('a, at_base_class)"
-proof
-  interpret type_definition Rep Abs "{a. P (sort_of a)}" by (rule type)
-  have sort_of_Rep: "\<And>a. P (sort_of (Rep a))" using Rep by simp
-  fix a b :: 'a and p p1 p2 :: perm
-  show "0 \<bullet> a = a"
-    unfolding permute_def by (simp add: Rep_inverse)
-  show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
-    unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
-  show "atom a = atom b \<longleftrightarrow> a = b"
-    unfolding atom_def by (simp add: Rep_inject)
-  show "p \<bullet> atom a = atom (p \<bullet> a)"
-    unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
-qed
-
-lemma at_class:
-  fixes s :: atom_sort
-  fixes Rep :: "'a \<Rightarrow> atom" and Abs :: "atom \<Rightarrow> 'a"
-  assumes type: "type_definition Rep Abs {a. sort_of a = s}"
-  assumes atom_def: "\<And>a. atom a = Rep a"
-  assumes permute_def: "\<And>p a. p \<bullet> a = Abs (p \<bullet> Rep a)"
-  shows "OFCLASS('a, at_class)"
-proof
-  interpret type_definition Rep Abs "{a. sort_of a = s}" by (rule type)
-  have sort_of_Rep: "\<And>a. sort_of (Rep a) = s" using Rep by simp
-  fix a b :: 'a and p p1 p2 :: perm
-  show "0 \<bullet> a = a"
-    unfolding permute_def by (simp add: Rep_inverse)
-  show "(p1 + p2) \<bullet> a = p1 \<bullet> p2 \<bullet> a"
-    unfolding permute_def by (simp add: Abs_inverse sort_of_Rep)
-  show "sort_of (atom a) = sort_of (atom b)"
-    unfolding atom_def by (simp add: sort_of_Rep)
-  show "atom a = atom b \<longleftrightarrow> a = b"
-    unfolding atom_def by (simp add: Rep_inject)
-  show "p \<bullet> atom a = atom (p \<bullet> a)"
-    unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep)
-qed
-
-setup {* Sign.add_const_constraint
-  (@{const_name "permute"}, SOME @{typ "perm \<Rightarrow> 'a::pt \<Rightarrow> 'a"}) *}
-setup {* Sign.add_const_constraint
-  (@{const_name "atom"}, SOME @{typ "'a::at_base \<Rightarrow> atom"}) *}
-
-
-section {* Automation for creating concrete atom types *}
-
-text {* at the moment only single-sort concrete atoms are supported *}
-
-use "atom_decl.ML"
-
-
-end
+/home/cu200/Isabelle/nominal-huffman/Nominal2_Atoms.thy
\ No newline at end of file
--- a/Quot/Nominal/Nominal2_Base.thy	Thu Feb 04 14:55:52 2010 +0100
+++ b/Quot/Nominal/Nominal2_Base.thy	Thu Feb 04 15:16:34 2010 +0100
@@ -1,1007 +1,1 @@
-(*  Title:      Nominal2_Base
-    Authors:    Brian Huffman, Christian Urban
-
-    Basic definitions and lemma infrastructure for 
-    Nominal Isabelle. 
-*)
-theory Nominal2_Base
-imports Main Infinite_Set
-begin
-
-section {* Atoms and Sorts *}
-
-text {* A simple implementation for atom_sorts is strings. *}
-(* types atom_sort = string *)
-
-text {* To deal with Church-like binding we use trees of  
-  strings as sorts. *}
-
-datatype atom_sort = Sort "string" "atom_sort list"
-
-datatype atom = Atom atom_sort nat
-
-
-text {* Basic projection function. *}
-
-primrec
-  sort_of :: "atom \<Rightarrow> atom_sort"
-where
-  "sort_of (Atom s i) = s"
-
-
-text {* There are infinitely many atoms of each sort. *}
-lemma INFM_sort_of_eq: 
-  shows "INFM a. sort_of a = s"
-proof -
-  have "INFM i. sort_of (Atom s i) = s" by simp
-  moreover have "inj (Atom s)" by (simp add: inj_on_def)
-  ultimately show "INFM a. sort_of a = s" by (rule INFM_inj)
-qed
-
-lemma infinite_sort_of_eq:
-  shows "infinite {a. sort_of a = s}"
-  using INFM_sort_of_eq unfolding INFM_iff_infinite .
-
-lemma atom_infinite [simp]: 
-  shows "infinite (UNIV :: atom set)"
-  using subset_UNIV infinite_sort_of_eq
-  by (rule infinite_super)
-
-lemma obtain_atom:
-  fixes X :: "atom set"
-  assumes X: "finite X"
-  obtains a where "a \<notin> X" "sort_of a = s"
-proof -
-  from X have "MOST a. a \<notin> X"
-    unfolding MOST_iff_cofinite by simp
-  with INFM_sort_of_eq
-  have "INFM a. sort_of a = s \<and> a \<notin> X"
-    by (rule INFM_conjI)
-  then obtain a where "a \<notin> X" "sort_of a = s"
-    by (auto elim: INFM_E)
-  then show ?thesis ..
-qed
-
-section {* Sort-Respecting Permutations *}
-
-typedef perm =
-  "{f. bij f \<and> finite {a. f a \<noteq> a} \<and> (\<forall>a. sort_of (f a) = sort_of a)}"
-proof
-  show "id \<in> ?perm" by simp
-qed
-
-lemma permI:
-  assumes "bij f" and "MOST x. f x = x" and "\<And>a. sort_of (f a) = sort_of a"
-  shows "f \<in> perm"
-  using assms unfolding perm_def MOST_iff_cofinite by simp
-
-lemma perm_is_bij: "f \<in> perm \<Longrightarrow> bij f"
-  unfolding perm_def by simp
-
-lemma perm_is_finite: "f \<in> perm \<Longrightarrow> finite {a. f a \<noteq> a}"
-  unfolding perm_def by simp
-
-lemma perm_is_sort_respecting: "f \<in> perm \<Longrightarrow> sort_of (f a) = sort_of a"
-  unfolding perm_def by simp
-
-lemma perm_MOST: "f \<in> perm \<Longrightarrow> MOST x. f x = x"
-  unfolding perm_def MOST_iff_cofinite by simp
-
-lemma perm_id: "id \<in> perm"
-  unfolding perm_def by simp
-
-lemma perm_comp:
-  assumes f: "f \<in> perm" and g: "g \<in> perm"
-  shows "(f \<circ> g) \<in> perm"
-apply (rule permI)
-apply (rule bij_comp)
-apply (rule perm_is_bij [OF g])
-apply (rule perm_is_bij [OF f])
-apply (rule MOST_rev_mp [OF perm_MOST [OF g]])
-apply (rule MOST_rev_mp [OF perm_MOST [OF f]])
-apply (simp)
-apply (simp add: perm_is_sort_respecting [OF f])
-apply (simp add: perm_is_sort_respecting [OF g])
-done
-
-lemma perm_inv:
-  assumes f: "f \<in> perm"
-  shows "(inv f) \<in> perm"
-apply (rule permI)
-apply (rule bij_imp_bij_inv)
-apply (rule perm_is_bij [OF f])
-apply (rule MOST_mono [OF perm_MOST [OF f]])
-apply (erule subst, rule inv_f_f)
-apply (rule bij_is_inj [OF perm_is_bij [OF f]])
-apply (rule perm_is_sort_respecting [OF f, THEN sym, THEN trans])
-apply (simp add: surj_f_inv_f [OF bij_is_surj [OF perm_is_bij [OF f]]])
-done
-
-lemma bij_Rep_perm: "bij (Rep_perm p)"
-  using Rep_perm [of p] unfolding perm_def by simp
-
-lemma finite_Rep_perm: "finite {a. Rep_perm p a \<noteq> a}"
-  using Rep_perm [of p] unfolding perm_def by simp
-
-lemma sort_of_Rep_perm: "sort_of (Rep_perm p a) = sort_of a"
-  using Rep_perm [of p] unfolding perm_def by simp
-
-lemma Rep_perm_ext:
-  "Rep_perm p1 = Rep_perm p2 \<Longrightarrow> p1 = p2"
-  by (simp add: expand_fun_eq Rep_perm_inject [symmetric])
-
-
-subsection {* Permutations form a group *}
-
-instantiation perm :: group_add
-begin
-
-definition
-  "0 = Abs_perm id"
-
-definition
-  "- p = Abs_perm (inv (Rep_perm p))"
-
-definition
-  "p + q = Abs_perm (Rep_perm p \<circ> Rep_perm q)"
-
-definition
-  "(p1::perm) - p2 = p1 + - p2"
-
-lemma Rep_perm_0: "Rep_perm 0 = id"
-  unfolding zero_perm_def
-  by (simp add: Abs_perm_inverse perm_id)
-
-lemma Rep_perm_add:
-  "Rep_perm (p1 + p2) = Rep_perm p1 \<circ> Rep_perm p2"
-  unfolding plus_perm_def
-  by (simp add: Abs_perm_inverse perm_comp Rep_perm)
-
-lemma Rep_perm_uminus:
-  "Rep_perm (- p) = inv (Rep_perm p)"
-  unfolding uminus_perm_def
-  by (simp add: Abs_perm_inverse perm_inv Rep_perm)
-
-instance
-apply default
-unfolding Rep_perm_inject [symmetric]
-unfolding minus_perm_def
-unfolding Rep_perm_add
-unfolding Rep_perm_uminus
-unfolding Rep_perm_0
-by (simp_all add: o_assoc inv_o_cancel [OF bij_is_inj [OF bij_Rep_perm]])
-
-end
-
-
-section {* Implementation of swappings *}
-
-definition
-  swap :: "atom \<Rightarrow> atom \<Rightarrow> perm" ("'(_ \<rightleftharpoons> _')")
-where
-  "(a \<rightleftharpoons> b) =
-    Abs_perm (if sort_of a = sort_of b 
-              then (\<lambda>c. if a = c then b else if b = c then a else c) 
-              else id)"
-
-lemma Rep_perm_swap:
-  "Rep_perm (a \<rightleftharpoons> b) =
-    (if sort_of a = sort_of b 
-     then (\<lambda>c. if a = c then b else if b = c then a else c)
-     else id)"
-unfolding swap_def
-apply (rule Abs_perm_inverse)
-apply (rule permI)
-apply (auto simp add: bij_def inj_on_def surj_def)[1]
-apply (rule MOST_rev_mp [OF MOST_neq(1) [of a]])
-apply (rule MOST_rev_mp [OF MOST_neq(1) [of b]])
-apply (simp)
-apply (simp)
-done
-
-lemmas Rep_perm_simps =
-  Rep_perm_0
-  Rep_perm_add
-  Rep_perm_uminus
-  Rep_perm_swap
-
-lemma swap_different_sorts [simp]:
-  "sort_of a \<noteq> sort_of b \<Longrightarrow> (a \<rightleftharpoons> b) = 0"
-  by (rule Rep_perm_ext) (simp add: Rep_perm_simps)
-
-lemma swap_cancel:
-  "(a \<rightleftharpoons> b) + (a \<rightleftharpoons> b) = 0"
-by (rule Rep_perm_ext) 
-   (simp add: Rep_perm_simps expand_fun_eq)
-
-lemma swap_self [simp]:
-  "(a \<rightleftharpoons> a) = 0"
-  by (rule Rep_perm_ext, simp add: Rep_perm_simps expand_fun_eq)
-
-lemma minus_swap [simp]:
-  "- (a \<rightleftharpoons> b) = (a \<rightleftharpoons> b)"
-  by (rule minus_unique [OF swap_cancel])
-
-lemma swap_commute:
-  "(a \<rightleftharpoons> b) = (b \<rightleftharpoons> a)"
-  by (rule Rep_perm_ext)
-     (simp add: Rep_perm_swap expand_fun_eq)
-
-lemma swap_triple:
-  assumes "a \<noteq> b" and "c \<noteq> b"
-  assumes "sort_of a = sort_of b" "sort_of b = sort_of c"
-  shows "(a \<rightleftharpoons> c) + (b \<rightleftharpoons> c) + (a \<rightleftharpoons> c) = (a \<rightleftharpoons> b)"
-  using assms
-  by (rule_tac Rep_perm_ext)
-     (auto simp add: Rep_perm_simps expand_fun_eq)
-
-
-section {* Permutation Types *}
-
-text {*
-  Infix syntax for @{text permute} has higher precedence than
-  addition, but lower than unary minus.
-*}
-
-class pt =
-  fixes permute :: "perm \<Rightarrow> 'a \<Rightarrow> 'a" ("_ \<bullet> _" [76, 75] 75)
-  assumes permute_zero [simp]: "0 \<bullet> x = x"
-  assumes permute_plus [simp]: "(p + q) \<bullet> x = p \<bullet> (q \<bullet> x)"
-begin
-
-lemma permute_diff [simp]:
-  shows "(p - q) \<bullet> x = p \<bullet> - q \<bullet> x"
-  unfolding diff_minus by simp
-
-lemma permute_minus_cancel [simp]:
-  shows "p \<bullet> - p \<bullet> x = x"
-  and   "- p \<bullet> p \<bullet> x = x"
-  unfolding permute_plus [symmetric] by simp_all
-
-lemma permute_swap_cancel [simp]:
-  shows "(a \<rightleftharpoons> b) \<bullet> (a \<rightleftharpoons> b) \<bullet> x = x"
-  unfolding permute_plus [symmetric]
-  by (simp add: swap_cancel)
-
-lemma permute_swap_cancel2 [simp]:
-  shows "(a \<rightleftharpoons> b) \<bullet> (b \<rightleftharpoons> a) \<bullet> x = x"
-  unfolding permute_plus [symmetric]
-  by (simp add: swap_commute)
-
-lemma inj_permute [simp]: 
-  shows "inj (permute p)"
-  by (rule inj_on_inverseI)
-     (rule permute_minus_cancel)
-
-lemma surj_permute [simp]: 
-  shows "surj (permute p)"
-  by (rule surjI, rule permute_minus_cancel)
-
-lemma bij_permute [simp]: 
-  shows "bij (permute p)"
-  by (rule bijI [OF inj_permute surj_permute])
-
-lemma inv_permute: 
-  shows "inv (permute p) = permute (- p)"
-  by (rule inv_equality) (simp_all)
-
-lemma permute_minus: 
-  shows "permute (- p) = inv (permute p)"
-  by (simp add: inv_permute)
-
-lemma permute_eq_iff [simp]: 
-  shows "p \<bullet> x = p \<bullet> y \<longleftrightarrow> x = y"
-  by (rule inj_permute [THEN inj_eq])
-
-end
-
-subsection {* Permutations for atoms *}
-
-instantiation atom :: pt
-begin
-
-definition
-  "p \<bullet> a = Rep_perm p a"
-
-instance 
-apply(default)
-apply(simp_all add: permute_atom_def Rep_perm_simps)
-done
-
-end
-
-lemma sort_of_permute [simp]:
-  shows "sort_of (p \<bullet> a) = sort_of a"
-  unfolding permute_atom_def by (rule sort_of_Rep_perm)
-
-lemma swap_atom:
-  shows "(a \<rightleftharpoons> b) \<bullet> c =
-           (if sort_of a = sort_of b
-            then (if c = a then b else if c = b then a else c) else c)"
-  unfolding permute_atom_def
-  by (simp add: Rep_perm_swap)
-
-lemma swap_atom_simps [simp]:
-  "sort_of a = sort_of b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> a = b"
-  "sort_of a = sort_of b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> b = a"
-  "c \<noteq> a \<Longrightarrow> c \<noteq> b \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> c = c"
-  unfolding swap_atom by simp_all
-
-lemma expand_perm_eq:
-  fixes p q :: "perm"
-  shows "p = q \<longleftrightarrow> (\<forall>a::atom. p \<bullet> a = q \<bullet> a)"
-  unfolding permute_atom_def
-  by (metis Rep_perm_ext ext)
-
-
-subsection {* Permutations for permutations *}
-
-instantiation perm :: pt
-begin
-
-definition
-  "p \<bullet> q = p + q - p"
-
-instance
-apply default
-apply (simp add: permute_perm_def)
-apply (simp add: permute_perm_def diff_minus minus_add add_assoc)
-done
-
-end
-
-lemma permute_self: "p \<bullet> p = p"
-unfolding permute_perm_def by (simp add: diff_minus add_assoc)
-
-lemma permute_eqvt:
-  shows "p \<bullet> (q \<bullet> x) = (p \<bullet> q) \<bullet> (p \<bullet> x)"
-  unfolding permute_perm_def by simp
-
-lemma zero_perm_eqvt:
-  shows "p \<bullet> (0::perm) = 0"
-  unfolding permute_perm_def by simp
-
-lemma add_perm_eqvt:
-  fixes p p1 p2 :: perm
-  shows "p \<bullet> (p1 + p2) = p \<bullet> p1 + p \<bullet> p2"
-  unfolding permute_perm_def
-  by (simp add: expand_perm_eq)
-
-lemma swap_eqvt:
-  shows "p \<bullet> (a \<rightleftharpoons> b) = (p \<bullet> a \<rightleftharpoons> p \<bullet> b)"
-  unfolding permute_perm_def
-  by (auto simp add: swap_atom expand_perm_eq)
-
-
-subsection {* Permutations for functions *}
-
-instantiation "fun" :: (pt, pt) pt
-begin
-
-definition
-  "p \<bullet> f = (\<lambda>x. p \<bullet> (f (- p \<bullet> x)))"
-
-instance
-apply default
-apply (simp add: permute_fun_def)
-apply (simp add: permute_fun_def minus_add)
-done
-
-end
-
-lemma permute_fun_app_eq:
-  shows "p \<bullet> (f x) = (p \<bullet> f) (p \<bullet> x)"
-unfolding permute_fun_def by simp
-
-
-subsection {* Permutations for booleans *}
-
-instantiation bool :: pt
-begin
-
-definition "p \<bullet> (b::bool) = b"
-
-instance
-apply(default) 
-apply(simp_all add: permute_bool_def)
-done
-
-end
-
-lemma Not_eqvt:
-  shows "p \<bullet> (\<not> A) = (\<not> (p \<bullet> A))"
-by (simp add: permute_bool_def)
-
-
-subsection {* Permutations for sets *}
-
-lemma permute_set_eq:
-  fixes x::"'a::pt"
-  and   p::"perm"
-  shows "(p \<bullet> X) = {p \<bullet> x | x. x \<in> X}"
-  apply(auto simp add: permute_fun_def permute_bool_def mem_def)
-  apply(rule_tac x="- p \<bullet> x" in exI)
-  apply(simp)
-  done
-
-lemma permute_set_eq_image:
-  shows "p \<bullet> X = permute p ` X"
-unfolding permute_set_eq by auto
-
-lemma permute_set_eq_vimage:
-  shows "p \<bullet> X = permute (- p) -` X"
-unfolding permute_fun_def permute_bool_def
-unfolding vimage_def Collect_def mem_def ..
-
-lemma swap_set_not_in:
-  assumes a: "a \<notin> S" "b \<notin> S"
-  shows "(a \<rightleftharpoons> b) \<bullet> S = S"
-  using a by (auto simp add: permute_set_eq swap_atom)
-
-lemma swap_set_in:
-  assumes a: "a \<in> S" "b \<notin> S" "sort_of a = sort_of b"
-  shows "(a \<rightleftharpoons> b) \<bullet> S \<noteq> S"
-  using a by (auto simp add: permute_set_eq swap_atom)
-
-
-subsection {* Permutations for units *}
-
-instantiation unit :: pt
-begin
-
-definition "p \<bullet> (u::unit) = u"
-
-instance proof
-qed (simp_all add: permute_unit_def)
-
-end
-
-
-subsection {* Permutations for products *}
-
-instantiation "*" :: (pt, pt) pt
-begin
-
-primrec 
-  permute_prod 
-where
-  Pair_eqvt: "p \<bullet> (x, y) = (p \<bullet> x, p \<bullet> y)"
-
-instance
-by default auto
-
-end
-
-subsection {* Permutations for sums *}
-
-instantiation "+" :: (pt, pt) pt
-begin
-
-primrec 
-  permute_sum 
-where
-  "p \<bullet> (Inl x) = Inl (p \<bullet> x)"
-| "p \<bullet> (Inr y) = Inr (p \<bullet> y)"
-
-instance proof
-qed (case_tac [!] x, simp_all)
-
-end
-
-subsection {* Permutations for lists *}
-
-instantiation list :: (pt) pt
-begin
-
-primrec 
-  permute_list 
-where
-  "p \<bullet> [] = []"
-| "p \<bullet> (x # xs) = p \<bullet> x # p \<bullet> xs"
-
-instance proof
-qed (induct_tac [!] x, simp_all)
-
-end
-
-subsection {* Permutations for options *}
-
-instantiation option :: (pt) pt
-begin
-
-primrec 
-  permute_option 
-where
-  "p \<bullet> None = None"
-| "p \<bullet> (Some x) = Some (p \<bullet> x)"
-
-instance proof
-qed (induct_tac [!] x, simp_all)
-
-end
-
-subsection {* Permutations for @{typ char}, @{typ nat}, and @{typ int} *}
-
-instantiation char :: pt
-begin
-
-definition "p \<bullet> (c::char) = c"
-
-instance proof
-qed (simp_all add: permute_char_def)
-
-end
-
-instantiation nat :: pt
-begin
-
-definition "p \<bullet> (n::nat) = n"
-
-instance proof
-qed (simp_all add: permute_nat_def)
-
-end
-
-instantiation int :: pt
-begin
-
-definition "p \<bullet> (i::int) = i"
-
-instance proof
-qed (simp_all add: permute_int_def)
-
-end
-
-
-section {* Pure types *}
-
-text {* Pure types will have always empty support. *}
-
-class pure = pt +
-  assumes permute_pure: "p \<bullet> x = x"
-
-text {* Types @{typ unit} and @{typ bool} are pure. *}
-
-instance unit :: pure
-proof qed (rule permute_unit_def)
-
-instance bool :: pure
-proof qed (rule permute_bool_def)
-
-text {* Other type constructors preserve purity. *}
-
-instance "fun" :: (pure, pure) pure
-by default (simp add: permute_fun_def permute_pure)
-
-instance "*" :: (pure, pure) pure
-by default (induct_tac x, simp add: permute_pure)
-
-instance "+" :: (pure, pure) pure
-by default (induct_tac x, simp_all add: permute_pure)
-
-instance list :: (pure) pure
-by default (induct_tac x, simp_all add: permute_pure)
-
-instance option :: (pure) pure
-by default (induct_tac x, simp_all add: permute_pure)
-
-
-subsection {* Types @{typ char}, @{typ nat}, and @{typ int} *}
-
-instance char :: pure
-proof qed (rule permute_char_def)
-
-instance nat :: pure
-proof qed (rule permute_nat_def)
-
-instance int :: pure
-proof qed (rule permute_int_def)
-
-
-subsection {* Supp, Freshness and Supports *}
-
-context pt
-begin
-
-definition
-  supp :: "'a \<Rightarrow> atom set"
-where
-  "supp x = {a. infinite {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x}}"
-
-end
-
-definition
-  fresh :: "atom \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ \<sharp> _" [55, 55] 55)
-where   
-  "a \<sharp> x \<equiv> a \<notin> supp x"
-
-lemma supp_conv_fresh: 
-  shows "supp x = {a. \<not> a \<sharp> x}"
-  unfolding fresh_def by simp
-
-lemma swap_rel_trans:
-  assumes "sort_of a = sort_of b"
-  assumes "sort_of b = sort_of c"
-  assumes "(a \<rightleftharpoons> c) \<bullet> x = x"
-  assumes "(b \<rightleftharpoons> c) \<bullet> x = x"
-  shows "(a \<rightleftharpoons> b) \<bullet> x = x"
-proof (cases)
-  assume "a = b \<or> c = b"
-  with assms show "(a \<rightleftharpoons> b) \<bullet> x = x" by auto
-next
-  assume *: "\<not> (a = b \<or> c = b)"
-  have "((a \<rightleftharpoons> c) + (b \<rightleftharpoons> c) + (a \<rightleftharpoons> c)) \<bullet> x = x"
-    using assms by simp
-  also have "(a \<rightleftharpoons> c) + (b \<rightleftharpoons> c) + (a \<rightleftharpoons> c) = (a \<rightleftharpoons> b)"
-    using assms * by (simp add: swap_triple)
-  finally show "(a \<rightleftharpoons> b) \<bullet> x = x" .
-qed
-
-lemma swap_fresh_fresh:
-  assumes a: "a \<sharp> x" 
-  and     b: "b \<sharp> x"
-  shows "(a \<rightleftharpoons> b) \<bullet> x = x"
-proof (cases)
-  assume asm: "sort_of a = sort_of b" 
-  have "finite {c. (a \<rightleftharpoons> c) \<bullet> x \<noteq> x}" "finite {c. (b \<rightleftharpoons> c) \<bullet> x \<noteq> x}" 
-    using a b unfolding fresh_def supp_def by simp_all
-  then have "finite ({c. (a \<rightleftharpoons> c) \<bullet> x \<noteq> x} \<union> {c. (b \<rightleftharpoons> c) \<bullet> x \<noteq> x})" by simp
-  then obtain c 
-    where "(a \<rightleftharpoons> c) \<bullet> x = x" "(b \<rightleftharpoons> c) \<bullet> x = x" "sort_of c = sort_of b"
-    by (rule obtain_atom) (auto)
-  then show "(a \<rightleftharpoons> b) \<bullet> x = x" using asm by (rule_tac swap_rel_trans) (simp_all)
-next
-  assume "sort_of a \<noteq> sort_of b"
-  then show "(a \<rightleftharpoons> b) \<bullet> x = x" by simp
-qed
-
-
-subsection {* supp and fresh are equivariant *}
-
-lemma finite_Collect_bij:
-  assumes a: "bij f"
-  shows "finite {x. P (f x)} = finite {x. P x}"
-by (metis a finite_vimage_iff vimage_Collect_eq)
-
-lemma fresh_permute_iff:
-  shows "(p \<bullet> a) \<sharp> (p \<bullet> x) \<longleftrightarrow> a \<sharp> x"
-proof -
-  have "(p \<bullet> a) \<sharp> (p \<bullet> x) \<longleftrightarrow> finite {b. (p \<bullet> a \<rightleftharpoons> b) \<bullet> p \<bullet> x \<noteq> p \<bullet> x}"
-    unfolding fresh_def supp_def by simp
-  also have "\<dots> \<longleftrightarrow> finite {b. (p \<bullet> a \<rightleftharpoons> p \<bullet> b) \<bullet> p \<bullet> x \<noteq> p \<bullet> x}"
-    using bij_permute by (rule finite_Collect_bij [symmetric])
-  also have "\<dots> \<longleftrightarrow> finite {b. p \<bullet> (a \<rightleftharpoons> b) \<bullet> x \<noteq> p \<bullet> x}"
-    by (simp only: permute_eqvt [of p] swap_eqvt)
-  also have "\<dots> \<longleftrightarrow> finite {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x}"
-    by (simp only: permute_eq_iff)
-  also have "\<dots> \<longleftrightarrow> a \<sharp> x"
-    unfolding fresh_def supp_def by simp
-  finally show ?thesis .
-qed
-
-lemma fresh_eqvt:
-  shows "p \<bullet> (a \<sharp> x) = (p \<bullet> a) \<sharp> (p \<bullet> x)"
-  by (simp add: permute_bool_def fresh_permute_iff)
-
-lemma supp_eqvt:
-  fixes  p  :: "perm"
-  and    x   :: "'a::pt"
-  shows "p \<bullet> (supp x) = supp (p \<bullet> x)"
-  unfolding supp_conv_fresh
-  unfolding permute_fun_def Collect_def
-  by (simp add: Not_eqvt fresh_eqvt)
-
-subsection {* supports *}
-
-definition
-  supports :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" (infixl "supports" 80)
-where  
-  "S supports x \<equiv> \<forall>a b. (a \<notin> S \<and> b \<notin> S \<longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x)"
-
-lemma supp_is_subset:
-  fixes S :: "atom set"
-  and   x :: "'a::pt"
-  assumes a1: "S supports x"
-  and     a2: "finite S"
-  shows "(supp x) \<subseteq> S"
-proof (rule ccontr)
-  assume "\<not>(supp x \<subseteq> S)"
-  then obtain a where b1: "a \<in> supp x" and b2: "a \<notin> S" by auto
-  from a1 b2 have "\<forall>b. b \<notin> S \<longrightarrow> (a \<rightleftharpoons> b) \<bullet> x = x" by (unfold supports_def) (auto)
-  hence "{b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x} \<subseteq> S" by auto
-  with a2 have "finite {b. (a \<rightleftharpoons> b)\<bullet>x \<noteq> x}" by (simp add: finite_subset)
-  then have "a \<notin> (supp x)" unfolding supp_def by simp
-  with b1 show False by simp
-qed
-
-lemma supports_finite:
-  fixes S :: "atom set"
-  and   x :: "'a::pt"
-  assumes a1: "S supports x"
-  and     a2: "finite S"
-  shows "finite (supp x)"
-proof -
-  have "(supp x) \<subseteq> S" using a1 a2 by (rule supp_is_subset)
-  then show "finite (supp x)" using a2 by (simp add: finite_subset)
-qed
-
-lemma supp_supports:
-  fixes x :: "'a::pt"
-  shows "(supp x) supports x"
-proof (unfold supports_def, intro strip)
-  fix a b
-  assume "a \<notin> (supp x) \<and> b \<notin> (supp x)"
-  then have "a \<sharp> x" and "b \<sharp> x" by (simp_all add: fresh_def)
-  then show "(a \<rightleftharpoons> b) \<bullet> x = x" by (rule swap_fresh_fresh)
-qed
-
-lemma supp_is_least_supports:
-  fixes S :: "atom set"
-  and   x :: "'a::pt"
-  assumes  a1: "S supports x"
-  and      a2: "finite S"
-  and      a3: "\<And>S'. finite S' \<Longrightarrow> (S' supports x) \<Longrightarrow> S \<subseteq> S'"
-  shows "(supp x) = S"
-proof (rule equalityI)
-  show "(supp x) \<subseteq> S" using a1 a2 by (rule supp_is_subset)
-  with a2 have fin: "finite (supp x)" by (rule rev_finite_subset)
-  have "(supp x) supports x" by (rule supp_supports)
-  with fin a3 show "S \<subseteq> supp x" by blast
-qed
-
-lemma subsetCI: 
-  shows "(\<And>x. x \<in> A \<Longrightarrow> x \<notin> B \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> B"
-  by auto
-
-lemma finite_supp_unique:
-  assumes a1: "S supports x"
-  assumes a2: "finite S"
-  assumes a3: "\<And>a b. \<lbrakk>a \<in> S; b \<notin> S; sort_of a = sort_of b\<rbrakk> \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> x \<noteq> x"
-  shows "(supp x) = S"
-  using a1 a2
-proof (rule supp_is_least_supports)
-  fix S'
-  assume "finite S'" and "S' supports x"
-  show "S \<subseteq> S'"
-  proof (rule subsetCI)
-    fix a
-    assume "a \<in> S" and "a \<notin> S'"
-    have "finite (S \<union> S')"
-      using `finite S` `finite S'` by simp
-    then obtain b where "b \<notin> S \<union> S'" and "sort_of b = sort_of a"
-      by (rule obtain_atom)
-    then have "b \<notin> S" and "b \<notin> S'"  and "sort_of a = sort_of b"
-      by simp_all
-    then have "(a \<rightleftharpoons> b) \<bullet> x = x"
-      using `a \<notin> S'` `S' supports x` by (simp add: supports_def)
-    moreover have "(a \<rightleftharpoons> b) \<bullet> x \<noteq> x"
-      using `a \<in> S` `b \<notin> S` `sort_of a = sort_of b`
-      by (rule a3)
-    ultimately show "False" by simp
-  qed
-qed
-
-section {* Finitely-supported types *}
-
-class fs = pt +
-  assumes finite_supp: "finite (supp x)"
-
-lemma pure_supp: 
-  shows "supp (x::'a::pure) = {}"
-  unfolding supp_def by (simp add: permute_pure)
-
-lemma pure_fresh:
-  fixes x::"'a::pure"
-  shows "a \<sharp> x"
-  unfolding fresh_def by (simp add: pure_supp)
-
-instance pure < fs
-by default (simp add: pure_supp)
-
-
-subsection  {* Type @{typ atom} is finitely-supported. *}
-
-lemma supp_atom:
-  shows "supp a = {a}"
-apply (rule finite_supp_unique)
-apply (clarsimp simp add: supports_def)
-apply simp
-apply simp
-done
-
-lemma fresh_atom: 
-  shows "a \<sharp> b \<longleftrightarrow> a \<noteq> b"
-  unfolding fresh_def supp_atom by simp
-
-instance atom :: fs
-by default (simp add: supp_atom)
-
-
-section {* Type @{typ perm} is finitely-supported. *}
-
-lemma perm_swap_eq:
-  shows "(a \<rightleftharpoons> b) \<bullet> p = p \<longleftrightarrow> (p \<bullet> (a \<rightleftharpoons> b)) = (a \<rightleftharpoons> b)"
-unfolding permute_perm_def
-by (metis add_diff_cancel minus_perm_def)
-
-lemma supports_perm: 
-  shows "{a. p \<bullet> a \<noteq> a} supports p"
-  unfolding supports_def
-  by (simp add: perm_swap_eq swap_eqvt)
-
-lemma finite_perm_lemma: 
-  shows "finite {a::atom. p \<bullet> a \<noteq> a}"
-  using finite_Rep_perm [of p]
-  unfolding permute_atom_def .
-
-lemma supp_perm:
-  shows "supp p = {a. p \<bullet> a \<noteq> a}"
-apply (rule finite_supp_unique)
-apply (rule supports_perm)
-apply (rule finite_perm_lemma)
-apply (simp add: perm_swap_eq swap_eqvt)
-apply (auto simp add: expand_perm_eq swap_atom)
-done
-
-lemma fresh_perm: 
-  shows "a \<sharp> p \<longleftrightarrow> p \<bullet> a = a"
-unfolding fresh_def by (simp add: supp_perm)
-
-lemma supp_swap:
-  shows "supp (a \<rightleftharpoons> b) = (if a = b \<or> sort_of a \<noteq> sort_of b then {} else {a, b})"
-  by (auto simp add: supp_perm swap_atom)
-
-lemma fresh_zero_perm: 
-  shows "a \<sharp> (0::perm)"
-  unfolding fresh_perm by simp
-
-lemma supp_zero_perm: 
-  shows "supp (0::perm) = {}"
-  unfolding supp_perm by simp
-
-lemma supp_plus_perm:
-  fixes p q::perm
-  shows "supp (p + q) \<subseteq> supp p \<union> supp q"
-  by (auto simp add: supp_perm)
-
-lemma supp_minus_perm:
-  fixes p::perm
-  shows "supp (- p) = supp p"
-  apply(auto simp add: supp_perm)
-  apply(metis permute_minus_cancel)+
-  done
-
-instance perm :: fs
-by default (simp add: supp_perm finite_perm_lemma)
-
-
-section {* Finite Support instances for other types *}
-
-subsection {* Type @{typ "'a \<times> 'b"} is finitely-supported. *}
-
-lemma supp_Pair: 
-  shows "supp (x, y) = supp x \<union> supp y"
-  by (simp add: supp_def Collect_imp_eq Collect_neg_eq)
-
-lemma fresh_Pair: 
-  shows "a \<sharp> (x, y) \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> y"
-  by (simp add: fresh_def supp_Pair)
-
-instance "*" :: (fs, fs) fs
-apply default
-apply (induct_tac x)
-apply (simp add: supp_Pair finite_supp)
-done
-
-subsection {* Type @{typ "'a + 'b"} is finitely supported *}
-
-lemma supp_Inl: 
-  shows "supp (Inl x) = supp x"
-  by (simp add: supp_def)
-
-lemma supp_Inr: 
-  shows "supp (Inr x) = supp x"
-  by (simp add: supp_def)
-
-lemma fresh_Inl: 
-  shows "a \<sharp> Inl x \<longleftrightarrow> a \<sharp> x"
-  by (simp add: fresh_def supp_Inl)
-
-lemma fresh_Inr: 
-  shows "a \<sharp> Inr y \<longleftrightarrow> a \<sharp> y"
-  by (simp add: fresh_def supp_Inr)
-
-instance "+" :: (fs, fs) fs
-apply default
-apply (induct_tac x)
-apply (simp_all add: supp_Inl supp_Inr finite_supp)
-done
-
-subsection {* Type @{typ "'a option"} is finitely supported *}
-
-lemma supp_None: 
-  shows "supp None = {}"
-by (simp add: supp_def)
-
-lemma supp_Some: 
-  shows "supp (Some x) = supp x"
-  by (simp add: supp_def)
-
-lemma fresh_None: 
-  shows "a \<sharp> None"
-  by (simp add: fresh_def supp_None)
-
-lemma fresh_Some: 
-  shows "a \<sharp> Some x \<longleftrightarrow> a \<sharp> x"
-  by (simp add: fresh_def supp_Some)
-
-instance option :: (fs) fs
-apply default
-apply (induct_tac x)
-apply (simp_all add: supp_None supp_Some finite_supp)
-done
-
-subsubsection {* Type @{typ "'a list"} is finitely supported *}
-
-lemma supp_Nil: 
-  shows "supp [] = {}"
-  by (simp add: supp_def)
-
-lemma supp_Cons: 
-  shows "supp (x # xs) = supp x \<union> supp xs"
-by (simp add: supp_def Collect_imp_eq Collect_neg_eq)
-
-lemma fresh_Nil: 
-  shows "a \<sharp> []"
-  by (simp add: fresh_def supp_Nil)
-
-lemma fresh_Cons: 
-  shows "a \<sharp> (x # xs) \<longleftrightarrow> a \<sharp> x \<and> a \<sharp> xs"
-  by (simp add: fresh_def supp_Cons)
-
-instance list :: (fs) fs
-apply default
-apply (induct_tac x)
-apply (simp_all add: supp_Nil supp_Cons finite_supp)
-done
-
-section {* Support and freshness for applications *}
-
-lemma supp_fun_app:
-  shows "supp (f x) \<subseteq> (supp f) \<union> (supp x)"
-proof (rule subsetCI)
-  fix a::"atom"
-  assume a: "a \<in> supp (f x)"
-  assume b: "a \<notin> supp f \<union> supp x"
-  then have "finite {b. (a \<rightleftharpoons> b) \<bullet> f \<noteq> f}" "finite {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x}" 
-    unfolding supp_def by auto
-  then have "finite ({b. (a \<rightleftharpoons> b) \<bullet> f \<noteq> f} \<union> {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x})" by simp
-  moreover 
-  have "{b. ((a \<rightleftharpoons> b) \<bullet> f) ((a \<rightleftharpoons> b) \<bullet> x) \<noteq> f x} \<subseteq> ({b. (a \<rightleftharpoons> b) \<bullet> f \<noteq> f} \<union> {b. (a \<rightleftharpoons> b) \<bullet> x \<noteq> x})"
-    by auto
-  ultimately have "finite {b. ((a \<rightleftharpoons> b) \<bullet> f) ((a \<rightleftharpoons> b) \<bullet> x) \<noteq> f x}"
-    using finite_subset by auto
-  then have "a \<notin> supp (f x)" unfolding supp_def
-    by (simp add: permute_fun_app_eq)
-  with a show "False" by simp
-qed
-    
-lemma fresh_fun_app:
-  shows "a \<sharp> (f, x) \<Longrightarrow> a \<sharp> f x"
-unfolding fresh_def
-using supp_fun_app
-by (auto simp add: supp_Pair)
-
-lemma fresh_fun_eqvt_app:
-  assumes a: "\<forall>p. p \<bullet> f = f"
-  shows "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
-proof -
-  from a have b: "supp f = {}"
-    unfolding supp_def by simp
-  show "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
-    unfolding fresh_def
-    using supp_fun_app b
-    by auto
-qed
-
-end
+/home/cu200/Isabelle/nominal-huffman/Nominal2_Base.thy
\ No newline at end of file
--- a/Quot/Nominal/Nominal2_Eqvt.thy	Thu Feb 04 14:55:52 2010 +0100
+++ b/Quot/Nominal/Nominal2_Eqvt.thy	Thu Feb 04 15:16:34 2010 +0100
@@ -1,298 +1,1 @@
-(*  Title:      Nominal2_Eqvt
-    Authors:    Brian Huffman, Christian Urban
-
-    Equivariance, Supp and Fresh Lemmas for Operators. 
-*)
-theory Nominal2_Eqvt
-imports Nominal2_Base
-uses ("nominal_thmdecls.ML")
-     ("nominal_permeq.ML")
-begin
-
-section {* Logical Operators *}
-
-
-lemma eq_eqvt:
-  shows "p \<bullet> (x = y) \<longleftrightarrow> (p \<bullet> x) = (p \<bullet> y)"
-  unfolding permute_eq_iff permute_bool_def ..
-
-lemma if_eqvt:
-  shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)"
-  by (simp add: permute_fun_def permute_bool_def)
-
-lemma True_eqvt:
-  shows "p \<bullet> True = True"
-  unfolding permute_bool_def ..
-
-lemma False_eqvt:
-  shows "p \<bullet> False = False"
-  unfolding permute_bool_def ..
-
-lemma imp_eqvt:
-  shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))"
-  by (simp add: permute_bool_def)
-
-lemma conj_eqvt:
-  shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))"
-  by (simp add: permute_bool_def)
-
-lemma disj_eqvt:
-  shows "p \<bullet> (A \<or> B) = ((p \<bullet> A) \<or> (p \<bullet> B))"
-  by (simp add: permute_bool_def)
-
-lemma Not_eqvt:
-  shows "p \<bullet> (\<not> A) = (\<not> (p \<bullet> A))"
-  by (simp add: permute_bool_def)
-
-lemma all_eqvt:
-  shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. (p \<bullet> P) x)"
-  unfolding permute_fun_def permute_bool_def
-  by (auto, drule_tac x="p \<bullet> x" in spec, simp)
-
-lemma all_eqvt2:
-  shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))"
-  unfolding permute_fun_def permute_bool_def
-  by (auto, drule_tac x="p \<bullet> x" in spec, simp)
-
-lemma ex_eqvt:
-  shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)"
-  unfolding permute_fun_def permute_bool_def
-  by (auto, rule_tac x="p \<bullet> x" in exI, simp)
-
-lemma ex_eqvt2:
-  shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))"
-  unfolding permute_fun_def permute_bool_def
-  by (auto, rule_tac x="p \<bullet> x" in exI, simp)
-
-lemma ex1_eqvt:
-  shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. (p \<bullet> P) x)"
-  unfolding Ex1_def 
-  by (simp add: ex_eqvt permute_fun_def conj_eqvt all_eqvt imp_eqvt eq_eqvt)
-
-lemma ex1_eqvt2:
-  shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))"
-  unfolding Ex1_def ex_eqvt2 conj_eqvt all_eqvt2 imp_eqvt eq_eqvt
-  by simp
-
-lemma the_eqvt:
-  assumes unique: "\<exists>!x. P x"
-  shows "p \<bullet> (THE x. P x) = (THE x. p \<bullet> P (- p \<bullet> x))"
-  apply(rule the1_equality [symmetric])
-  apply(simp add: ex1_eqvt2[symmetric])
-  apply(simp add: permute_bool_def unique)
-  apply(simp add: permute_bool_def)
-  apply(rule theI'[OF unique])
-  done
-
-section {* Set Operations *}
-
-lemma mem_eqvt:
-  shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)"
-  unfolding mem_def permute_fun_def by simp
-
-lemma not_mem_eqvt:
-  shows "p \<bullet> (x \<notin> A) \<longleftrightarrow> (p \<bullet> x) \<notin> (p \<bullet> A)"
-  unfolding mem_def permute_fun_def by (simp add: Not_eqvt)
-
-lemma Collect_eqvt:
-  shows "p \<bullet> {x. P x} = {x. (p \<bullet> P) x}"
-  unfolding Collect_def permute_fun_def ..
-
-lemma Collect_eqvt2:
-  shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}"
-  unfolding Collect_def permute_fun_def ..
-
-lemma empty_eqvt:
-  shows "p \<bullet> {} = {}"
-  unfolding empty_def Collect_eqvt2 False_eqvt ..
-
-lemma supp_set_empty:
-  shows "supp {} = {}"
-  by (simp add: supp_def empty_eqvt)
-
-lemma fresh_set_empty:
-  shows "a \<sharp> {}"
-  by (simp add: fresh_def supp_set_empty)
-
-lemma UNIV_eqvt:
-  shows "p \<bullet> UNIV = UNIV"
-  unfolding UNIV_def Collect_eqvt2 True_eqvt ..
-
-lemma union_eqvt:
-  shows "p \<bullet> (A \<union> B) = (p \<bullet> A) \<union> (p \<bullet> B)"
-  unfolding Un_def Collect_eqvt2 disj_eqvt mem_eqvt by simp
-
-lemma inter_eqvt:
-  shows "p \<bullet> (A \<inter> B) = (p \<bullet> A) \<inter> (p \<bullet> B)"
-  unfolding Int_def Collect_eqvt2 conj_eqvt mem_eqvt by simp
-
-lemma Diff_eqvt:
-  fixes A B :: "'a::pt set"
-  shows "p \<bullet> (A - B) = p \<bullet> A - p \<bullet> B"
-  unfolding set_diff_eq Collect_eqvt2 conj_eqvt Not_eqvt mem_eqvt by simp
-
-lemma Compl_eqvt:
-  fixes A :: "'a::pt set"
-  shows "p \<bullet> (- A) = - (p \<bullet> A)"
-  unfolding Compl_eq_Diff_UNIV Diff_eqvt UNIV_eqvt ..
-
-lemma insert_eqvt:
-  shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)"
-  unfolding permute_set_eq_image image_insert ..
-
-lemma vimage_eqvt:
-  shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)"
-  unfolding vimage_def permute_fun_def [where f=f]
-  unfolding Collect_eqvt2 mem_eqvt ..
-
-lemma image_eqvt:
-  shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)"
-  unfolding permute_set_eq_image
-  unfolding permute_fun_def [where f=f]
-  by (simp add: image_image)
-
-lemma finite_permute_iff:
-  shows "finite (p \<bullet> A) \<longleftrightarrow> finite A"
-  unfolding permute_set_eq_vimage
-  using bij_permute by (rule finite_vimage_iff)
-
-lemma finite_eqvt:
-  shows "p \<bullet> finite A = finite (p \<bullet> A)"
-  unfolding finite_permute_iff permute_bool_def ..
-
-
-section {* List Operations *}
-
-lemma append_eqvt:
-  shows "p \<bullet> (xs @ ys) = (p \<bullet> xs) @ (p \<bullet> ys)"
-  by (induct xs) auto
-
-lemma supp_append:
-  shows "supp (xs @ ys) = supp xs \<union> supp ys"
-  by (induct xs) (auto simp add: supp_Nil supp_Cons)
-
-lemma fresh_append:
-  shows "a \<sharp> (xs @ ys) \<longleftrightarrow> a \<sharp> xs \<and> a \<sharp> ys"
-  by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
-
-lemma rev_eqvt:
-  shows "p \<bullet> (rev xs) = rev (p \<bullet> xs)"
-  by (induct xs) (simp_all add: append_eqvt)
-
-lemma supp_rev:
-  shows "supp (rev xs) = supp xs"
-  by (induct xs) (auto simp add: supp_append supp_Cons supp_Nil)
-
-lemma fresh_rev:
-  shows "a \<sharp> rev xs \<longleftrightarrow> a \<sharp> xs"
-  by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil)
-
-lemma set_eqvt:
-  shows "p \<bullet> (set xs) = set (p \<bullet> xs)"
-  by (induct xs) (simp_all add: empty_eqvt insert_eqvt)
-
-(* needs finite support premise
-lemma supp_set:
-  fixes x :: "'a::pt"
-  shows "supp (set xs) = supp xs"
-*)
-
-
-section {* Product Operations *}
-
-lemma fst_eqvt:
-  "p \<bullet> (fst x) = fst (p \<bullet> x)"
- by (cases x) simp
-
-lemma snd_eqvt:
-  "p \<bullet> (snd x) = snd (p \<bullet> x)"
- by (cases x) simp
-
-
-section {* Units *}
-
-lemma supp_unit:
-  shows "supp () = {}"
-  by (simp add: supp_def)
-
-lemma fresh_unit:
-  shows "a \<sharp> ()"
-  by (simp add: fresh_def supp_unit)
-
-section {* Equivariance automation *}
-
-text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_force} *}
-
-use "nominal_thmdecls.ML"
-setup "Nominal_ThmDecls.setup"
-
-lemmas [eqvt] = 
-  (* connectives *)
-  eq_eqvt if_eqvt imp_eqvt disj_eqvt conj_eqvt Not_eqvt 
-  True_eqvt False_eqvt ex_eqvt all_eqvt
-  imp_eqvt [folded induct_implies_def]
-
-  (* nominal *)
-  permute_eqvt supp_eqvt fresh_eqvt
-  permute_pure
-
-  (* datatypes *)
-  permute_prod.simps
-  fst_eqvt snd_eqvt
-
-  (* sets *)
-  empty_eqvt UNIV_eqvt union_eqvt inter_eqvt
-  Diff_eqvt Compl_eqvt insert_eqvt
-
-thm eqvts
-thm eqvts_raw
-
-text {* helper lemmas for the eqvt_tac *}
-
-definition
-  "unpermute p = permute (- p)"
-
-lemma eqvt_apply:
-  fixes f :: "'a::pt \<Rightarrow> 'b::pt" 
-  and x :: "'a::pt"
-  shows "p \<bullet> (f x) \<equiv> (p \<bullet> f) (p \<bullet> x)"
-  unfolding permute_fun_def by simp
-
-lemma eqvt_lambda:
-  fixes f :: "'a::pt \<Rightarrow> 'b::pt"
-  shows "p \<bullet> (\<lambda>x. f x) \<equiv> (\<lambda>x. p \<bullet> (f (unpermute p x)))"
-  unfolding permute_fun_def unpermute_def by simp
-
-lemma eqvt_bound:
-  shows "p \<bullet> unpermute p x \<equiv> x"
-  unfolding unpermute_def by simp
-
-use "nominal_permeq.ML"
-
-
-lemma "p \<bullet> (A \<longrightarrow> B = C)"
-apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) 
-oops
-
-lemma "p \<bullet> (\<lambda>(x::'a::pt). A \<longrightarrow> (B::'a \<Rightarrow> bool) x = C) = foo"
-apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
-oops
-
-lemma "p \<bullet> (\<lambda>x y. \<exists>z. x = z \<and> x = y \<longrightarrow> z \<noteq> x) = foo"
-apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
-oops
-
-lemma "p \<bullet> (\<lambda>f x. f (g (f x))) = foo"
-apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
-oops
-
-lemma "p \<bullet> (\<lambda>q. q \<bullet> (r \<bullet> x)) = foo"
-apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
-oops
-
-lemma "p \<bullet> (q \<bullet> r \<bullet> x) = foo"
-apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *})
-oops
-
-
-end
\ No newline at end of file
+/home/cu200/Isabelle/nominal-huffman/Nominal2_Eqvt.thy
\ No newline at end of file
--- a/Quot/Nominal/Nominal2_Supp.thy	Thu Feb 04 14:55:52 2010 +0100
+++ b/Quot/Nominal/Nominal2_Supp.thy	Thu Feb 04 15:16:34 2010 +0100
@@ -1,375 +1,1 @@
-(*  Title:      Nominal2_Supp
-    Authors:    Brian Huffman, Christian Urban
-
-    Supplementary Lemmas and Definitions for 
-    Nominal Isabelle. 
-*)
-theory Nominal2_Supp
-imports Nominal2_Base Nominal2_Eqvt Nominal2_Atoms
-begin
-
-
-section {* Fresh-Star *}
-
-text {* The fresh-star generalisation of fresh is used in strong
-  induction principles. *}
-
-definition 
-  fresh_star :: "atom set \<Rightarrow> 'a::pt \<Rightarrow> bool" ("_ \<sharp>* _" [80,80] 80)
-where 
-  "xs \<sharp>* c \<equiv> \<forall>x \<in> xs. x \<sharp> c"
-
-lemma fresh_star_prod:
-  fixes xs::"atom set"
-  shows "xs \<sharp>* (a, b) = (xs \<sharp>* a \<and> xs \<sharp>* b)"
-  by (auto simp add: fresh_star_def fresh_Pair)
-
-lemma fresh_star_union:
-  shows "(xs \<union> ys) \<sharp>* c = (xs \<sharp>* c \<and> ys \<sharp>* c)"
-  by (auto simp add: fresh_star_def)
-
-lemma fresh_star_insert:
-  shows "(insert x ys) \<sharp>* c = (x \<sharp> c \<and> ys \<sharp>* c)"
-  by (auto simp add: fresh_star_def)
-
-lemma fresh_star_Un_elim:
-  "((S \<union> T) \<sharp>* c \<Longrightarrow> PROP C) \<equiv> (S \<sharp>* c \<Longrightarrow> T \<sharp>* c \<Longrightarrow> PROP C)"
-  unfolding fresh_star_def
-  apply(rule)
-  apply(erule meta_mp)
-  apply(auto)
-  done
-
-lemma fresh_star_insert_elim:
-  "(insert x S \<sharp>* c \<Longrightarrow> PROP C) \<equiv> (x \<sharp> c \<Longrightarrow> S \<sharp>* c \<Longrightarrow> PROP C)"
-  unfolding fresh_star_def
-  by rule (simp_all add: fresh_star_def)
-
-lemma fresh_star_empty_elim:
-  "({} \<sharp>* c \<Longrightarrow> PROP C) \<equiv> PROP C"
-  by (simp add: fresh_star_def)
-
-lemma fresh_star_unit_elim: 
-  shows "(a \<sharp>* () \<Longrightarrow> PROP C) \<equiv> PROP C"
-  by (simp add: fresh_star_def fresh_unit) 
-
-lemma fresh_star_prod_elim: 
-  shows "(a \<sharp>* (x, y) \<Longrightarrow> PROP C) \<equiv> (a \<sharp>* x \<Longrightarrow> a \<sharp>* y \<Longrightarrow> PROP C)"
-  by (rule, simp_all add: fresh_star_prod)
-
-
-section {* Avoiding of atom sets *}
-
-text {* 
-  For every set of atoms, there is another set of atoms
-  avoiding a finitely supported c and there is a permutation
-  which 'translates' between both sets.
-*}
-
-lemma at_set_avoiding_aux:
-  fixes Xs::"atom set"
-  and   As::"atom set"
-  assumes b: "Xs \<subseteq> As"
-  and     c: "finite As"
-  shows "\<exists>p. (p \<bullet> Xs) \<inter> As = {} \<and> (supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))"
-proof -
-  from b c have "finite Xs" by (rule finite_subset)
-  then show ?thesis using b
-  proof (induct rule: finite_subset_induct)
-    case empty
-    have "0 \<bullet> {} \<inter> As = {}" by simp
-    moreover
-    have "supp (0::perm) \<subseteq> {} \<union> 0 \<bullet> {}" by (simp add: supp_zero_perm)
-    ultimately show ?case by blast
-  next
-    case (insert x Xs)
-    then obtain p where
-      p1: "(p \<bullet> Xs) \<inter> As = {}" and 
-      p2: "supp p \<subseteq> (Xs \<union> (p \<bullet> Xs))" by blast
-    from `x \<in> As` p1 have "x \<notin> p \<bullet> Xs" by fast
-    with `x \<notin> Xs` p2 have "x \<notin> supp p" by fast
-    hence px: "p \<bullet> x = x" unfolding supp_perm by simp
-    have "finite (As \<union> p \<bullet> Xs)"
-      using `finite As` `finite Xs`
-      by (simp add: permute_set_eq_image)
-    then obtain y where "y \<notin> (As \<union> p \<bullet> Xs)" "sort_of y = sort_of x"
-      by (rule obtain_atom)
-    hence y: "y \<notin> As" "y \<notin> p \<bullet> Xs" "sort_of y = sort_of x"
-      by simp_all
-    let ?q = "(x \<rightleftharpoons> y) + p"
-    have q: "?q \<bullet> insert x Xs = insert y (p \<bullet> Xs)"
-      unfolding insert_eqvt
-      using `p \<bullet> x = x` `sort_of y = sort_of x`
-      using `x \<notin> p \<bullet> Xs` `y \<notin> p \<bullet> Xs`
-      by (simp add: swap_atom swap_set_not_in)
-    have "?q \<bullet> insert x Xs \<inter> As = {}"
-      using `y \<notin> As` `p \<bullet> Xs \<inter> As = {}`
-      unfolding q by simp
-    moreover
-    have "supp ?q \<subseteq> insert x Xs \<union> ?q \<bullet> insert x Xs"
-      using p2 unfolding q
-      apply (intro subset_trans [OF supp_plus_perm])
-      apply (auto simp add: supp_swap)
-      done
-    ultimately show ?case by blast
-  qed
-qed
-
-lemma at_set_avoiding:
-  assumes a: "finite Xs"
-  and     b: "finite (supp c)"
-  obtains p::"perm" where "(p \<bullet> Xs)\<sharp>*c" and "(supp p) \<subseteq> (Xs \<union> (p \<bullet> Xs))"
-  using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \<union> supp c"]
-  unfolding fresh_star_def fresh_def by blast
-
-
-section {* The freshness lemma according to Andrew Pitts *}
-
-lemma fresh_conv_MOST: 
-  shows "a \<sharp> x \<longleftrightarrow> (MOST b. (a \<rightleftharpoons> b) \<bullet> x = x)"
-  unfolding fresh_def supp_def MOST_iff_cofinite by simp
-
-lemma fresh_apply:
-  assumes "a \<sharp> f" and "a \<sharp> x" 
-  shows "a \<sharp> f x"
-  using assms unfolding fresh_conv_MOST
-  unfolding permute_fun_app_eq [where f=f]
-  by (elim MOST_rev_mp, simp)
-
-lemma freshness_lemma:
-  fixes h :: "'a::at \<Rightarrow> 'b::pt"
-  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
-  shows  "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
-proof -
-  from a obtain b where a1: "atom b \<sharp> h" and a2: "atom b \<sharp> h b"
-    by (auto simp add: fresh_Pair)
-  show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
-  proof (intro exI allI impI)
-    fix a :: 'a
-    assume a3: "atom a \<sharp> h"
-    show "h a = h b"
-    proof (cases "a = b")
-      assume "a = b"
-      thus "h a = h b" by simp
-    next
-      assume "a \<noteq> b"
-      hence "atom a \<sharp> b" by (simp add: fresh_at)
-      with a3 have "atom a \<sharp> h b" by (rule fresh_apply)
-      with a2 have d1: "(atom b \<rightleftharpoons> atom a) \<bullet> (h b) = (h b)"
-        by (rule swap_fresh_fresh)
-      from a1 a3 have d2: "(atom b \<rightleftharpoons> atom a) \<bullet> h = h"
-        by (rule swap_fresh_fresh)
-      from d1 have "h b = (atom b \<rightleftharpoons> atom a) \<bullet> (h b)" by simp
-      also have "\<dots> = ((atom b \<rightleftharpoons> atom a) \<bullet> h) ((atom b \<rightleftharpoons> atom a) \<bullet> b)"
-        by (rule permute_fun_app_eq)
-      also have "\<dots> = h a"
-        using d2 by simp
-      finally show "h a = h b"  by simp
-    qed
-  qed
-qed
-
-lemma freshness_lemma_unique:
-  fixes h :: "'a::at \<Rightarrow> 'b::pt"
-  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
-  shows "\<exists>!x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
-proof (rule ex_ex1I)
-  from a show "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
-    by (rule freshness_lemma)
-next
-  fix x y
-  assume x: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = x"
-  assume y: "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = y"
-  from a x y show "x = y"
-    by (auto simp add: fresh_Pair)
-qed
-
-text {* packaging the freshness lemma into a function *}
-
-definition
-  fresh_fun :: "('a::at \<Rightarrow> 'b::pt) \<Rightarrow> 'b"
-where
-  "fresh_fun h = (THE x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x)"
-
-lemma fresh_fun_app:
-  fixes h :: "'a::at \<Rightarrow> 'b::pt"
-  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
-  assumes b: "atom a \<sharp> h"
-  shows "fresh_fun h = h a"
-unfolding fresh_fun_def
-proof (rule the_equality)
-  show "\<forall>a'. atom a' \<sharp> h \<longrightarrow> h a' = h a"
-  proof (intro strip)
-    fix a':: 'a
-    assume c: "atom a' \<sharp> h"
-    from a have "\<exists>x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x" by (rule freshness_lemma)
-    with b c show "h a' = h a" by auto
-  qed
-next
-  fix fr :: 'b
-  assume "\<forall>a. atom a \<sharp> h \<longrightarrow> h a = fr"
-  with b show "fr = h a" by auto
-qed
-
-lemma fresh_fun_app':
-  fixes h :: "'a::at \<Rightarrow> 'b::pt"
-  assumes a: "atom a \<sharp> h" "atom a \<sharp> h a"
-  shows "fresh_fun h = h a"
-  apply (rule fresh_fun_app)
-  apply (auto simp add: fresh_Pair intro: a)
-  done
-
-lemma fresh_fun_eqvt:
-  fixes h :: "'a::at \<Rightarrow> 'b::pt"
-  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
-  shows "p \<bullet> (fresh_fun h) = fresh_fun (p \<bullet> h)"
-  using a
-  apply (clarsimp simp add: fresh_Pair)
-  apply (subst fresh_fun_app', assumption+)
-  apply (drule fresh_permute_iff [where p=p, THEN iffD2])
-  apply (drule fresh_permute_iff [where p=p, THEN iffD2])
-  apply (simp add: atom_eqvt permute_fun_app_eq [where f=h])
-  apply (erule (1) fresh_fun_app' [symmetric])
-  done
-
-lemma fresh_fun_supports:
-  fixes h :: "'a::at \<Rightarrow> 'b::pt"
-  assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
-  shows "(supp h) supports (fresh_fun h)"
-  apply (simp add: supports_def fresh_def [symmetric])
-  apply (simp add: fresh_fun_eqvt [OF a] swap_fresh_fresh)
-  done
-
-notation fresh_fun (binder "FRESH " 10)
-
-lemma FRESH_f_iff:
-  fixes P :: "'a::at \<Rightarrow> 'b::pure"
-  fixes f :: "'b \<Rightarrow> 'c::pure"
-  assumes P: "finite (supp P)"
-  shows "(FRESH x. f (P x)) = f (FRESH x. P x)"
-proof -
-  obtain a::'a where "atom a \<notin> supp P"
-    using P by (rule obtain_at_base)
-  hence "atom a \<sharp> P"
-    by (simp add: fresh_def)
-  show "(FRESH x. f (P x)) = f (FRESH x. P x)"
-    apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh])
-    apply (cut_tac `atom a \<sharp> P`)
-    apply (simp add: fresh_conv_MOST)
-    apply (elim MOST_rev_mp, rule MOST_I, clarify)
-    apply (simp add: permute_fun_def permute_pure expand_fun_eq)
-    apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> P` pure_fresh])
-    apply (rule refl)
-    done
-qed
-
-lemma FRESH_binop_iff:
-  fixes P :: "'a::at \<Rightarrow> 'b::pure"
-  fixes Q :: "'a::at \<Rightarrow> 'c::pure"
-  fixes binop :: "'b \<Rightarrow> 'c \<Rightarrow> 'd::pure"
-  assumes P: "finite (supp P)" 
-  and     Q: "finite (supp Q)"
-  shows "(FRESH x. binop (P x) (Q x)) = binop (FRESH x. P x) (FRESH x. Q x)"
-proof -
-  from assms have "finite (supp P \<union> supp Q)" by simp
-  then obtain a::'a where "atom a \<notin> (supp P \<union> supp Q)"
-    by (rule obtain_at_base)
-  hence "atom a \<sharp> P" and "atom a \<sharp> Q"
-    by (simp_all add: fresh_def)
-  show ?thesis
-    apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh])
-    apply (cut_tac `atom a \<sharp> P` `atom a \<sharp> Q`)
-    apply (simp add: fresh_conv_MOST)
-    apply (elim MOST_rev_mp, rule MOST_I, clarify)
-    apply (simp add: permute_fun_def permute_pure expand_fun_eq)
-    apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> P` pure_fresh])
-    apply (subst fresh_fun_app' [where a=a, OF `atom a \<sharp> Q` pure_fresh])
-    apply (rule refl)
-    done
-qed
-
-lemma FRESH_conj_iff:
-  fixes P Q :: "'a::at \<Rightarrow> bool"
-  assumes P: "finite (supp P)" and Q: "finite (supp Q)"
-  shows "(FRESH x. P x \<and> Q x) \<longleftrightarrow> (FRESH x. P x) \<and> (FRESH x. Q x)"
-using P Q by (rule FRESH_binop_iff)
-
-lemma FRESH_disj_iff:
-  fixes P Q :: "'a::at \<Rightarrow> bool"
-  assumes P: "finite (supp P)" and Q: "finite (supp Q)"
-  shows "(FRESH x. P x \<or> Q x) \<longleftrightarrow> (FRESH x. P x) \<or> (FRESH x. Q x)"
-using P Q by (rule FRESH_binop_iff)
-
-
-section {* An example of a function without finite support *}
-
-primrec
-  nat_of :: "atom \<Rightarrow> nat"
-where
-  "nat_of (Atom s n) = n"
-
-lemma atom_eq_iff:
-  fixes a b :: atom
-  shows "a = b \<longleftrightarrow> sort_of a = sort_of b \<and> nat_of a = nat_of b"
-  by (induct a, induct b, simp)
-
-lemma not_fresh_nat_of:
-  shows "\<not> a \<sharp> nat_of"
-unfolding fresh_def supp_def
-proof (clarsimp)
-  assume "finite {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of}"
-  hence "finite ({a} \<union> {b. (a \<rightleftharpoons> b) \<bullet> nat_of \<noteq> nat_of})"
-    by simp
-  then obtain b where
-    b1: "b \<noteq> a" and
-    b2: "sort_of b = sort_of a" and
-    b3: "(a \<rightleftharpoons> b) \<bullet> nat_of = nat_of"
-    by (rule obtain_atom) auto
-  have "nat_of a = (a \<rightleftharpoons> b) \<bullet> (nat_of a)" by (simp add: permute_nat_def)
-  also have "\<dots> = ((a \<rightleftharpoons> b) \<bullet> nat_of) ((a \<rightleftharpoons> b) \<bullet> a)" by (simp add: permute_fun_app_eq)
-  also have "\<dots> = nat_of ((a \<rightleftharpoons> b) \<bullet> a)" using b3 by simp
-  also have "\<dots> = nat_of b" using b2 by simp
-  finally have "nat_of a = nat_of b" by simp
-  with b2 have "a = b" by (simp add: atom_eq_iff)
-  with b1 show "False" by simp
-qed
-
-lemma supp_nat_of:
-  shows "supp nat_of = UNIV"
-  using not_fresh_nat_of [unfolded fresh_def] by auto
-
-
-section {* Support for sets of atoms *}
-
-lemma supp_finite_atom_set:
-  fixes S::"atom set"
-  assumes "finite S"
-  shows "supp S = S"
-  apply(rule finite_supp_unique)
-  apply(simp add: supports_def)
-  apply(simp add: swap_set_not_in)
-  apply(rule assms)
-  apply(simp add: swap_set_in)
-done
-
-
-(*
-lemma supp_infinite:
-  fixes S::"atom set"
-  assumes asm: "finite (UNIV - S)"
-  shows "(supp S) = (UNIV - S)"
-apply(rule finite_supp_unique)
-apply(auto simp add: supports_def permute_set_eq swap_atom)[1]
-apply(rule asm)
-apply(auto simp add: permute_set_eq swap_atom)[1]
-done
-
-lemma supp_infinite_coinfinite:
-  fixes S::"atom set"
-  assumes asm1: "infinite S"
-  and     asm2: "infinite (UNIV-S)"
-  shows "(supp S) = (UNIV::atom set)"
-*)
-
-
-end
\ No newline at end of file
+/home/cu200/Isabelle/nominal-huffman/Nominal2_Supp.thy
\ No newline at end of file