# HG changeset patch # User Christian Urban # Date 1265292994 -3600 # Node ID 8de99358f3093819b34705cad33b354c990e7683 # Parent d5d887bb986acd5c0a8b2302cc76de999c696a0a linked versions - instead of copies diff -r d5d887bb986a -r 8de99358f309 Quot/Nominal/Nominal2_Atoms.thy --- a/Quot/Nominal/Nominal2_Atoms.thy Thu Feb 04 14:55:52 2010 +0100 +++ b/Quot/Nominal/Nominal2_Atoms.thy Thu Feb 04 15:16:34 2010 +0100 @@ -1,221 +1,1 @@ -(* Title: Nominal2_Atoms - Authors: Brian Huffman, Christian Urban - - Definitions for concrete atom types. -*) -theory Nominal2_Atoms -imports Nominal2_Base -uses ("atom_decl.ML") -begin - -section {* Concrete atom types *} - -text {* - Class @{text at_base} allows types containing multiple sorts of atoms. - Class @{text at} only allows types with a single sort. -*} - -class at_base = pt + - fixes atom :: "'a \ atom" - assumes atom_eq_iff [simp]: "atom a = atom b \ a = b" - assumes atom_eqvt: "p \ (atom a) = atom (p \ a)" - -class at = at_base + - assumes sort_of_atom_eq [simp]: "sort_of (atom a) = sort_of (atom b)" - -instance at < at_base .. - -lemma supp_at_base: - fixes a::"'a::at_base" - shows "supp a = {atom a}" - by (simp add: supp_atom [symmetric] supp_def atom_eqvt) - -lemma fresh_at: - shows "a \ b \ a \ atom b" - unfolding fresh_def by (simp add: supp_at_base) - -instance at_base < fs -proof qed (simp add: supp_at_base) - - -lemma at_base_infinite [simp]: - shows "infinite (UNIV :: 'a::at_base set)" (is "infinite ?U") -proof - obtain a :: 'a where "True" by auto - assume "finite ?U" - hence "finite (atom ` ?U)" - by (rule finite_imageI) - then obtain b where b: "b \ atom ` ?U" "sort_of b = sort_of (atom a)" - by (rule obtain_atom) - from b(2) have "b = atom ((atom a \ b) \ a)" - unfolding atom_eqvt [symmetric] - by (simp add: swap_atom) - hence "b \ atom ` ?U" by simp - with b(1) show "False" by simp -qed - -lemma swap_at_base_simps [simp]: - fixes x y::"'a::at_base" - shows "sort_of (atom x) = sort_of (atom y) \ (atom x \ atom y) \ x = y" - and "sort_of (atom x) = sort_of (atom y) \ (atom x \ atom y) \ y = x" - and "atom x \ a \ atom x \ b \ (a \ b) \ x = x" - unfolding atom_eq_iff [symmetric] - unfolding atom_eqvt [symmetric] - by simp_all - -lemma obtain_at_base: - assumes X: "finite X" - obtains a::"'a::at_base" where "atom a \ X" -proof - - have "inj (atom :: 'a \ atom)" - by (simp add: inj_on_def) - with X have "finite (atom -` X :: 'a set)" - by (rule finite_vimageI) - with at_base_infinite have "atom -` X \ (UNIV :: 'a set)" - by auto - then obtain a :: 'a where "atom a \ X" - by auto - thus ?thesis .. -qed - - -section {* A swapping operation for concrete atoms *} - -definition - flip :: "'a::at_base \ 'a \ perm" ("'(_ \ _')") -where - "(a \ b) = (atom a \ atom b)" - -lemma flip_self [simp]: "(a \ a) = 0" - unfolding flip_def by (rule swap_self) - -lemma flip_commute: "(a \ b) = (b \ a)" - unfolding flip_def by (rule swap_commute) - -lemma minus_flip [simp]: "- (a \ b) = (a \ b)" - unfolding flip_def by (rule minus_swap) - -lemma add_flip_cancel: "(a \ b) + (a \ b) = 0" - unfolding flip_def by (rule swap_cancel) - -lemma permute_flip_cancel [simp]: "(a \ b) \ (a \ b) \ x = x" - unfolding permute_plus [symmetric] add_flip_cancel by simp - -lemma permute_flip_cancel2 [simp]: "(a \ b) \ (b \ a) \ x = x" - by (simp add: flip_commute) - -lemma flip_eqvt: - fixes a b c::"'a::at_base" - shows "p \ (a \ b) = (p \ a \ p \ b)" - unfolding flip_def - by (simp add: swap_eqvt atom_eqvt) - -lemma flip_at_base_simps [simp]: - shows "sort_of (atom a) = sort_of (atom b) \ (a \ b) \ a = b" - and "sort_of (atom a) = sort_of (atom b) \ (a \ b) \ b = a" - and "\a \ c; b \ c\ \ (a \ b) \ c = c" - and "sort_of (atom a) \ sort_of (atom b) \ (a \ b) \ x = x" - unfolding flip_def - unfolding atom_eq_iff [symmetric] - unfolding atom_eqvt [symmetric] - by simp_all - -text {* the following two lemmas do not hold for at_base, - only for single sort atoms from at *} - -lemma permute_flip_at: - fixes a b c::"'a::at" - shows "(a \ b) \ c = (if c = a then b else if c = b then a else c)" - unfolding flip_def - apply (rule atom_eq_iff [THEN iffD1]) - apply (subst atom_eqvt [symmetric]) - apply (simp add: swap_atom) - done - -lemma flip_at_simps [simp]: - fixes a b::"'a::at" - shows "(a \ b) \ a = b" - and "(a \ b) \ b = a" - unfolding permute_flip_at by simp_all - - -subsection {* Syntax for coercing at-elements to the atom-type *} - -syntax - "_atom_constrain" :: "logic \ type \ logic" ("_:::_" [4, 0] 3) - -translations - "_atom_constrain a t" => "atom (_constrain a t)" - - -subsection {* A lemma for proving instances of class @{text at}. *} - -setup {* Sign.add_const_constraint (@{const_name "permute"}, NONE) *} -setup {* Sign.add_const_constraint (@{const_name "atom"}, NONE) *} - -text {* - New atom types are defined as subtypes of @{typ atom}. -*} - -lemma exists_eq_sort: - shows "\a. a \ {a. sort_of a = s}" - by (rule_tac x="Atom s 0" in exI, simp) - -lemma at_base_class: - fixes s :: atom_sort - fixes Rep :: "'a \ atom" and Abs :: "atom \ 'a" - assumes type: "type_definition Rep Abs {a. P (sort_of a)}" - assumes atom_def: "\a. atom a = Rep a" - assumes permute_def: "\p a. p \ a = Abs (p \ Rep a)" - shows "OFCLASS('a, at_base_class)" -proof - interpret type_definition Rep Abs "{a. P (sort_of a)}" by (rule type) - have sort_of_Rep: "\a. P (sort_of (Rep a))" using Rep by simp - fix a b :: 'a and p p1 p2 :: perm - show "0 \ a = a" - unfolding permute_def by (simp add: Rep_inverse) - show "(p1 + p2) \ a = p1 \ p2 \ a" - unfolding permute_def by (simp add: Abs_inverse sort_of_Rep) - show "atom a = atom b \ a = b" - unfolding atom_def by (simp add: Rep_inject) - show "p \ atom a = atom (p \ a)" - unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep) -qed - -lemma at_class: - fixes s :: atom_sort - fixes Rep :: "'a \ atom" and Abs :: "atom \ 'a" - assumes type: "type_definition Rep Abs {a. sort_of a = s}" - assumes atom_def: "\a. atom a = Rep a" - assumes permute_def: "\p a. p \ a = Abs (p \ Rep a)" - shows "OFCLASS('a, at_class)" -proof - interpret type_definition Rep Abs "{a. sort_of a = s}" by (rule type) - have sort_of_Rep: "\a. sort_of (Rep a) = s" using Rep by simp - fix a b :: 'a and p p1 p2 :: perm - show "0 \ a = a" - unfolding permute_def by (simp add: Rep_inverse) - show "(p1 + p2) \ a = p1 \ p2 \ a" - unfolding permute_def by (simp add: Abs_inverse sort_of_Rep) - show "sort_of (atom a) = sort_of (atom b)" - unfolding atom_def by (simp add: sort_of_Rep) - show "atom a = atom b \ a = b" - unfolding atom_def by (simp add: Rep_inject) - show "p \ atom a = atom (p \ a)" - unfolding permute_def atom_def by (simp add: Abs_inverse sort_of_Rep) -qed - -setup {* Sign.add_const_constraint - (@{const_name "permute"}, SOME @{typ "perm \ 'a::pt \ 'a"}) *} -setup {* Sign.add_const_constraint - (@{const_name "atom"}, SOME @{typ "'a::at_base \ atom"}) *} - - -section {* Automation for creating concrete atom types *} - -text {* at the moment only single-sort concrete atoms are supported *} - -use "atom_decl.ML" - - -end +/home/cu200/Isabelle/nominal-huffman/Nominal2_Atoms.thy \ No newline at end of file diff -r d5d887bb986a -r 8de99358f309 Quot/Nominal/Nominal2_Base.thy --- a/Quot/Nominal/Nominal2_Base.thy Thu Feb 04 14:55:52 2010 +0100 +++ b/Quot/Nominal/Nominal2_Base.thy Thu Feb 04 15:16:34 2010 +0100 @@ -1,1007 +1,1 @@ -(* Title: Nominal2_Base - Authors: Brian Huffman, Christian Urban - - Basic definitions and lemma infrastructure for - Nominal Isabelle. -*) -theory Nominal2_Base -imports Main Infinite_Set -begin - -section {* Atoms and Sorts *} - -text {* A simple implementation for atom_sorts is strings. *} -(* types atom_sort = string *) - -text {* To deal with Church-like binding we use trees of - strings as sorts. *} - -datatype atom_sort = Sort "string" "atom_sort list" - -datatype atom = Atom atom_sort nat - - -text {* Basic projection function. *} - -primrec - sort_of :: "atom \ atom_sort" -where - "sort_of (Atom s i) = s" - - -text {* There are infinitely many atoms of each sort. *} -lemma INFM_sort_of_eq: - shows "INFM a. sort_of a = s" -proof - - have "INFM i. sort_of (Atom s i) = s" by simp - moreover have "inj (Atom s)" by (simp add: inj_on_def) - ultimately show "INFM a. sort_of a = s" by (rule INFM_inj) -qed - -lemma infinite_sort_of_eq: - shows "infinite {a. sort_of a = s}" - using INFM_sort_of_eq unfolding INFM_iff_infinite . - -lemma atom_infinite [simp]: - shows "infinite (UNIV :: atom set)" - using subset_UNIV infinite_sort_of_eq - by (rule infinite_super) - -lemma obtain_atom: - fixes X :: "atom set" - assumes X: "finite X" - obtains a where "a \ X" "sort_of a = s" -proof - - from X have "MOST a. a \ X" - unfolding MOST_iff_cofinite by simp - with INFM_sort_of_eq - have "INFM a. sort_of a = s \ a \ X" - by (rule INFM_conjI) - then obtain a where "a \ X" "sort_of a = s" - by (auto elim: INFM_E) - then show ?thesis .. -qed - -section {* Sort-Respecting Permutations *} - -typedef perm = - "{f. bij f \ finite {a. f a \ a} \ (\a. sort_of (f a) = sort_of a)}" -proof - show "id \ ?perm" by simp -qed - -lemma permI: - assumes "bij f" and "MOST x. f x = x" and "\a. sort_of (f a) = sort_of a" - shows "f \ perm" - using assms unfolding perm_def MOST_iff_cofinite by simp - -lemma perm_is_bij: "f \ perm \ bij f" - unfolding perm_def by simp - -lemma perm_is_finite: "f \ perm \ finite {a. f a \ a}" - unfolding perm_def by simp - -lemma perm_is_sort_respecting: "f \ perm \ sort_of (f a) = sort_of a" - unfolding perm_def by simp - -lemma perm_MOST: "f \ perm \ MOST x. f x = x" - unfolding perm_def MOST_iff_cofinite by simp - -lemma perm_id: "id \ perm" - unfolding perm_def by simp - -lemma perm_comp: - assumes f: "f \ perm" and g: "g \ perm" - shows "(f \ g) \ perm" -apply (rule permI) -apply (rule bij_comp) -apply (rule perm_is_bij [OF g]) -apply (rule perm_is_bij [OF f]) -apply (rule MOST_rev_mp [OF perm_MOST [OF g]]) -apply (rule MOST_rev_mp [OF perm_MOST [OF f]]) -apply (simp) -apply (simp add: perm_is_sort_respecting [OF f]) -apply (simp add: perm_is_sort_respecting [OF g]) -done - -lemma perm_inv: - assumes f: "f \ perm" - shows "(inv f) \ perm" -apply (rule permI) -apply (rule bij_imp_bij_inv) -apply (rule perm_is_bij [OF f]) -apply (rule MOST_mono [OF perm_MOST [OF f]]) -apply (erule subst, rule inv_f_f) -apply (rule bij_is_inj [OF perm_is_bij [OF f]]) -apply (rule perm_is_sort_respecting [OF f, THEN sym, THEN trans]) -apply (simp add: surj_f_inv_f [OF bij_is_surj [OF perm_is_bij [OF f]]]) -done - -lemma bij_Rep_perm: "bij (Rep_perm p)" - using Rep_perm [of p] unfolding perm_def by simp - -lemma finite_Rep_perm: "finite {a. Rep_perm p a \ a}" - using Rep_perm [of p] unfolding perm_def by simp - -lemma sort_of_Rep_perm: "sort_of (Rep_perm p a) = sort_of a" - using Rep_perm [of p] unfolding perm_def by simp - -lemma Rep_perm_ext: - "Rep_perm p1 = Rep_perm p2 \ p1 = p2" - by (simp add: expand_fun_eq Rep_perm_inject [symmetric]) - - -subsection {* Permutations form a group *} - -instantiation perm :: group_add -begin - -definition - "0 = Abs_perm id" - -definition - "- p = Abs_perm (inv (Rep_perm p))" - -definition - "p + q = Abs_perm (Rep_perm p \ Rep_perm q)" - -definition - "(p1::perm) - p2 = p1 + - p2" - -lemma Rep_perm_0: "Rep_perm 0 = id" - unfolding zero_perm_def - by (simp add: Abs_perm_inverse perm_id) - -lemma Rep_perm_add: - "Rep_perm (p1 + p2) = Rep_perm p1 \ Rep_perm p2" - unfolding plus_perm_def - by (simp add: Abs_perm_inverse perm_comp Rep_perm) - -lemma Rep_perm_uminus: - "Rep_perm (- p) = inv (Rep_perm p)" - unfolding uminus_perm_def - by (simp add: Abs_perm_inverse perm_inv Rep_perm) - -instance -apply default -unfolding Rep_perm_inject [symmetric] -unfolding minus_perm_def -unfolding Rep_perm_add -unfolding Rep_perm_uminus -unfolding Rep_perm_0 -by (simp_all add: o_assoc inv_o_cancel [OF bij_is_inj [OF bij_Rep_perm]]) - -end - - -section {* Implementation of swappings *} - -definition - swap :: "atom \ atom \ perm" ("'(_ \ _')") -where - "(a \ b) = - Abs_perm (if sort_of a = sort_of b - then (\c. if a = c then b else if b = c then a else c) - else id)" - -lemma Rep_perm_swap: - "Rep_perm (a \ b) = - (if sort_of a = sort_of b - then (\c. if a = c then b else if b = c then a else c) - else id)" -unfolding swap_def -apply (rule Abs_perm_inverse) -apply (rule permI) -apply (auto simp add: bij_def inj_on_def surj_def)[1] -apply (rule MOST_rev_mp [OF MOST_neq(1) [of a]]) -apply (rule MOST_rev_mp [OF MOST_neq(1) [of b]]) -apply (simp) -apply (simp) -done - -lemmas Rep_perm_simps = - Rep_perm_0 - Rep_perm_add - Rep_perm_uminus - Rep_perm_swap - -lemma swap_different_sorts [simp]: - "sort_of a \ sort_of b \ (a \ b) = 0" - by (rule Rep_perm_ext) (simp add: Rep_perm_simps) - -lemma swap_cancel: - "(a \ b) + (a \ b) = 0" -by (rule Rep_perm_ext) - (simp add: Rep_perm_simps expand_fun_eq) - -lemma swap_self [simp]: - "(a \ a) = 0" - by (rule Rep_perm_ext, simp add: Rep_perm_simps expand_fun_eq) - -lemma minus_swap [simp]: - "- (a \ b) = (a \ b)" - by (rule minus_unique [OF swap_cancel]) - -lemma swap_commute: - "(a \ b) = (b \ a)" - by (rule Rep_perm_ext) - (simp add: Rep_perm_swap expand_fun_eq) - -lemma swap_triple: - assumes "a \ b" and "c \ b" - assumes "sort_of a = sort_of b" "sort_of b = sort_of c" - shows "(a \ c) + (b \ c) + (a \ c) = (a \ b)" - using assms - by (rule_tac Rep_perm_ext) - (auto simp add: Rep_perm_simps expand_fun_eq) - - -section {* Permutation Types *} - -text {* - Infix syntax for @{text permute} has higher precedence than - addition, but lower than unary minus. -*} - -class pt = - fixes permute :: "perm \ 'a \ 'a" ("_ \ _" [76, 75] 75) - assumes permute_zero [simp]: "0 \ x = x" - assumes permute_plus [simp]: "(p + q) \ x = p \ (q \ x)" -begin - -lemma permute_diff [simp]: - shows "(p - q) \ x = p \ - q \ x" - unfolding diff_minus by simp - -lemma permute_minus_cancel [simp]: - shows "p \ - p \ x = x" - and "- p \ p \ x = x" - unfolding permute_plus [symmetric] by simp_all - -lemma permute_swap_cancel [simp]: - shows "(a \ b) \ (a \ b) \ x = x" - unfolding permute_plus [symmetric] - by (simp add: swap_cancel) - -lemma permute_swap_cancel2 [simp]: - shows "(a \ b) \ (b \ a) \ x = x" - unfolding permute_plus [symmetric] - by (simp add: swap_commute) - -lemma inj_permute [simp]: - shows "inj (permute p)" - by (rule inj_on_inverseI) - (rule permute_minus_cancel) - -lemma surj_permute [simp]: - shows "surj (permute p)" - by (rule surjI, rule permute_minus_cancel) - -lemma bij_permute [simp]: - shows "bij (permute p)" - by (rule bijI [OF inj_permute surj_permute]) - -lemma inv_permute: - shows "inv (permute p) = permute (- p)" - by (rule inv_equality) (simp_all) - -lemma permute_minus: - shows "permute (- p) = inv (permute p)" - by (simp add: inv_permute) - -lemma permute_eq_iff [simp]: - shows "p \ x = p \ y \ x = y" - by (rule inj_permute [THEN inj_eq]) - -end - -subsection {* Permutations for atoms *} - -instantiation atom :: pt -begin - -definition - "p \ a = Rep_perm p a" - -instance -apply(default) -apply(simp_all add: permute_atom_def Rep_perm_simps) -done - -end - -lemma sort_of_permute [simp]: - shows "sort_of (p \ a) = sort_of a" - unfolding permute_atom_def by (rule sort_of_Rep_perm) - -lemma swap_atom: - shows "(a \ b) \ c = - (if sort_of a = sort_of b - then (if c = a then b else if c = b then a else c) else c)" - unfolding permute_atom_def - by (simp add: Rep_perm_swap) - -lemma swap_atom_simps [simp]: - "sort_of a = sort_of b \ (a \ b) \ a = b" - "sort_of a = sort_of b \ (a \ b) \ b = a" - "c \ a \ c \ b \ (a \ b) \ c = c" - unfolding swap_atom by simp_all - -lemma expand_perm_eq: - fixes p q :: "perm" - shows "p = q \ (\a::atom. p \ a = q \ a)" - unfolding permute_atom_def - by (metis Rep_perm_ext ext) - - -subsection {* Permutations for permutations *} - -instantiation perm :: pt -begin - -definition - "p \ q = p + q - p" - -instance -apply default -apply (simp add: permute_perm_def) -apply (simp add: permute_perm_def diff_minus minus_add add_assoc) -done - -end - -lemma permute_self: "p \ p = p" -unfolding permute_perm_def by (simp add: diff_minus add_assoc) - -lemma permute_eqvt: - shows "p \ (q \ x) = (p \ q) \ (p \ x)" - unfolding permute_perm_def by simp - -lemma zero_perm_eqvt: - shows "p \ (0::perm) = 0" - unfolding permute_perm_def by simp - -lemma add_perm_eqvt: - fixes p p1 p2 :: perm - shows "p \ (p1 + p2) = p \ p1 + p \ p2" - unfolding permute_perm_def - by (simp add: expand_perm_eq) - -lemma swap_eqvt: - shows "p \ (a \ b) = (p \ a \ p \ b)" - unfolding permute_perm_def - by (auto simp add: swap_atom expand_perm_eq) - - -subsection {* Permutations for functions *} - -instantiation "fun" :: (pt, pt) pt -begin - -definition - "p \ f = (\x. p \ (f (- p \ x)))" - -instance -apply default -apply (simp add: permute_fun_def) -apply (simp add: permute_fun_def minus_add) -done - -end - -lemma permute_fun_app_eq: - shows "p \ (f x) = (p \ f) (p \ x)" -unfolding permute_fun_def by simp - - -subsection {* Permutations for booleans *} - -instantiation bool :: pt -begin - -definition "p \ (b::bool) = b" - -instance -apply(default) -apply(simp_all add: permute_bool_def) -done - -end - -lemma Not_eqvt: - shows "p \ (\ A) = (\ (p \ A))" -by (simp add: permute_bool_def) - - -subsection {* Permutations for sets *} - -lemma permute_set_eq: - fixes x::"'a::pt" - and p::"perm" - shows "(p \ X) = {p \ x | x. x \ X}" - apply(auto simp add: permute_fun_def permute_bool_def mem_def) - apply(rule_tac x="- p \ x" in exI) - apply(simp) - done - -lemma permute_set_eq_image: - shows "p \ X = permute p ` X" -unfolding permute_set_eq by auto - -lemma permute_set_eq_vimage: - shows "p \ X = permute (- p) -` X" -unfolding permute_fun_def permute_bool_def -unfolding vimage_def Collect_def mem_def .. - -lemma swap_set_not_in: - assumes a: "a \ S" "b \ S" - shows "(a \ b) \ S = S" - using a by (auto simp add: permute_set_eq swap_atom) - -lemma swap_set_in: - assumes a: "a \ S" "b \ S" "sort_of a = sort_of b" - shows "(a \ b) \ S \ S" - using a by (auto simp add: permute_set_eq swap_atom) - - -subsection {* Permutations for units *} - -instantiation unit :: pt -begin - -definition "p \ (u::unit) = u" - -instance proof -qed (simp_all add: permute_unit_def) - -end - - -subsection {* Permutations for products *} - -instantiation "*" :: (pt, pt) pt -begin - -primrec - permute_prod -where - Pair_eqvt: "p \ (x, y) = (p \ x, p \ y)" - -instance -by default auto - -end - -subsection {* Permutations for sums *} - -instantiation "+" :: (pt, pt) pt -begin - -primrec - permute_sum -where - "p \ (Inl x) = Inl (p \ x)" -| "p \ (Inr y) = Inr (p \ y)" - -instance proof -qed (case_tac [!] x, simp_all) - -end - -subsection {* Permutations for lists *} - -instantiation list :: (pt) pt -begin - -primrec - permute_list -where - "p \ [] = []" -| "p \ (x # xs) = p \ x # p \ xs" - -instance proof -qed (induct_tac [!] x, simp_all) - -end - -subsection {* Permutations for options *} - -instantiation option :: (pt) pt -begin - -primrec - permute_option -where - "p \ None = None" -| "p \ (Some x) = Some (p \ x)" - -instance proof -qed (induct_tac [!] x, simp_all) - -end - -subsection {* Permutations for @{typ char}, @{typ nat}, and @{typ int} *} - -instantiation char :: pt -begin - -definition "p \ (c::char) = c" - -instance proof -qed (simp_all add: permute_char_def) - -end - -instantiation nat :: pt -begin - -definition "p \ (n::nat) = n" - -instance proof -qed (simp_all add: permute_nat_def) - -end - -instantiation int :: pt -begin - -definition "p \ (i::int) = i" - -instance proof -qed (simp_all add: permute_int_def) - -end - - -section {* Pure types *} - -text {* Pure types will have always empty support. *} - -class pure = pt + - assumes permute_pure: "p \ x = x" - -text {* Types @{typ unit} and @{typ bool} are pure. *} - -instance unit :: pure -proof qed (rule permute_unit_def) - -instance bool :: pure -proof qed (rule permute_bool_def) - -text {* Other type constructors preserve purity. *} - -instance "fun" :: (pure, pure) pure -by default (simp add: permute_fun_def permute_pure) - -instance "*" :: (pure, pure) pure -by default (induct_tac x, simp add: permute_pure) - -instance "+" :: (pure, pure) pure -by default (induct_tac x, simp_all add: permute_pure) - -instance list :: (pure) pure -by default (induct_tac x, simp_all add: permute_pure) - -instance option :: (pure) pure -by default (induct_tac x, simp_all add: permute_pure) - - -subsection {* Types @{typ char}, @{typ nat}, and @{typ int} *} - -instance char :: pure -proof qed (rule permute_char_def) - -instance nat :: pure -proof qed (rule permute_nat_def) - -instance int :: pure -proof qed (rule permute_int_def) - - -subsection {* Supp, Freshness and Supports *} - -context pt -begin - -definition - supp :: "'a \ atom set" -where - "supp x = {a. infinite {b. (a \ b) \ x \ x}}" - -end - -definition - fresh :: "atom \ 'a::pt \ bool" ("_ \ _" [55, 55] 55) -where - "a \ x \ a \ supp x" - -lemma supp_conv_fresh: - shows "supp x = {a. \ a \ x}" - unfolding fresh_def by simp - -lemma swap_rel_trans: - assumes "sort_of a = sort_of b" - assumes "sort_of b = sort_of c" - assumes "(a \ c) \ x = x" - assumes "(b \ c) \ x = x" - shows "(a \ b) \ x = x" -proof (cases) - assume "a = b \ c = b" - with assms show "(a \ b) \ x = x" by auto -next - assume *: "\ (a = b \ c = b)" - have "((a \ c) + (b \ c) + (a \ c)) \ x = x" - using assms by simp - also have "(a \ c) + (b \ c) + (a \ c) = (a \ b)" - using assms * by (simp add: swap_triple) - finally show "(a \ b) \ x = x" . -qed - -lemma swap_fresh_fresh: - assumes a: "a \ x" - and b: "b \ x" - shows "(a \ b) \ x = x" -proof (cases) - assume asm: "sort_of a = sort_of b" - have "finite {c. (a \ c) \ x \ x}" "finite {c. (b \ c) \ x \ x}" - using a b unfolding fresh_def supp_def by simp_all - then have "finite ({c. (a \ c) \ x \ x} \ {c. (b \ c) \ x \ x})" by simp - then obtain c - where "(a \ c) \ x = x" "(b \ c) \ x = x" "sort_of c = sort_of b" - by (rule obtain_atom) (auto) - then show "(a \ b) \ x = x" using asm by (rule_tac swap_rel_trans) (simp_all) -next - assume "sort_of a \ sort_of b" - then show "(a \ b) \ x = x" by simp -qed - - -subsection {* supp and fresh are equivariant *} - -lemma finite_Collect_bij: - assumes a: "bij f" - shows "finite {x. P (f x)} = finite {x. P x}" -by (metis a finite_vimage_iff vimage_Collect_eq) - -lemma fresh_permute_iff: - shows "(p \ a) \ (p \ x) \ a \ x" -proof - - have "(p \ a) \ (p \ x) \ finite {b. (p \ a \ b) \ p \ x \ p \ x}" - unfolding fresh_def supp_def by simp - also have "\ \ finite {b. (p \ a \ p \ b) \ p \ x \ p \ x}" - using bij_permute by (rule finite_Collect_bij [symmetric]) - also have "\ \ finite {b. p \ (a \ b) \ x \ p \ x}" - by (simp only: permute_eqvt [of p] swap_eqvt) - also have "\ \ finite {b. (a \ b) \ x \ x}" - by (simp only: permute_eq_iff) - also have "\ \ a \ x" - unfolding fresh_def supp_def by simp - finally show ?thesis . -qed - -lemma fresh_eqvt: - shows "p \ (a \ x) = (p \ a) \ (p \ x)" - by (simp add: permute_bool_def fresh_permute_iff) - -lemma supp_eqvt: - fixes p :: "perm" - and x :: "'a::pt" - shows "p \ (supp x) = supp (p \ x)" - unfolding supp_conv_fresh - unfolding permute_fun_def Collect_def - by (simp add: Not_eqvt fresh_eqvt) - -subsection {* supports *} - -definition - supports :: "atom set \ 'a::pt \ bool" (infixl "supports" 80) -where - "S supports x \ \a b. (a \ S \ b \ S \ (a \ b) \ x = x)" - -lemma supp_is_subset: - fixes S :: "atom set" - and x :: "'a::pt" - assumes a1: "S supports x" - and a2: "finite S" - shows "(supp x) \ S" -proof (rule ccontr) - assume "\(supp x \ S)" - then obtain a where b1: "a \ supp x" and b2: "a \ S" by auto - from a1 b2 have "\b. b \ S \ (a \ b) \ x = x" by (unfold supports_def) (auto) - hence "{b. (a \ b) \ x \ x} \ S" by auto - with a2 have "finite {b. (a \ b)\x \ x}" by (simp add: finite_subset) - then have "a \ (supp x)" unfolding supp_def by simp - with b1 show False by simp -qed - -lemma supports_finite: - fixes S :: "atom set" - and x :: "'a::pt" - assumes a1: "S supports x" - and a2: "finite S" - shows "finite (supp x)" -proof - - have "(supp x) \ S" using a1 a2 by (rule supp_is_subset) - then show "finite (supp x)" using a2 by (simp add: finite_subset) -qed - -lemma supp_supports: - fixes x :: "'a::pt" - shows "(supp x) supports x" -proof (unfold supports_def, intro strip) - fix a b - assume "a \ (supp x) \ b \ (supp x)" - then have "a \ x" and "b \ x" by (simp_all add: fresh_def) - then show "(a \ b) \ x = x" by (rule swap_fresh_fresh) -qed - -lemma supp_is_least_supports: - fixes S :: "atom set" - and x :: "'a::pt" - assumes a1: "S supports x" - and a2: "finite S" - and a3: "\S'. finite S' \ (S' supports x) \ S \ S'" - shows "(supp x) = S" -proof (rule equalityI) - show "(supp x) \ S" using a1 a2 by (rule supp_is_subset) - with a2 have fin: "finite (supp x)" by (rule rev_finite_subset) - have "(supp x) supports x" by (rule supp_supports) - with fin a3 show "S \ supp x" by blast -qed - -lemma subsetCI: - shows "(\x. x \ A \ x \ B \ False) \ A \ B" - by auto - -lemma finite_supp_unique: - assumes a1: "S supports x" - assumes a2: "finite S" - assumes a3: "\a b. \a \ S; b \ S; sort_of a = sort_of b\ \ (a \ b) \ x \ x" - shows "(supp x) = S" - using a1 a2 -proof (rule supp_is_least_supports) - fix S' - assume "finite S'" and "S' supports x" - show "S \ S'" - proof (rule subsetCI) - fix a - assume "a \ S" and "a \ S'" - have "finite (S \ S')" - using `finite S` `finite S'` by simp - then obtain b where "b \ S \ S'" and "sort_of b = sort_of a" - by (rule obtain_atom) - then have "b \ S" and "b \ S'" and "sort_of a = sort_of b" - by simp_all - then have "(a \ b) \ x = x" - using `a \ S'` `S' supports x` by (simp add: supports_def) - moreover have "(a \ b) \ x \ x" - using `a \ S` `b \ S` `sort_of a = sort_of b` - by (rule a3) - ultimately show "False" by simp - qed -qed - -section {* Finitely-supported types *} - -class fs = pt + - assumes finite_supp: "finite (supp x)" - -lemma pure_supp: - shows "supp (x::'a::pure) = {}" - unfolding supp_def by (simp add: permute_pure) - -lemma pure_fresh: - fixes x::"'a::pure" - shows "a \ x" - unfolding fresh_def by (simp add: pure_supp) - -instance pure < fs -by default (simp add: pure_supp) - - -subsection {* Type @{typ atom} is finitely-supported. *} - -lemma supp_atom: - shows "supp a = {a}" -apply (rule finite_supp_unique) -apply (clarsimp simp add: supports_def) -apply simp -apply simp -done - -lemma fresh_atom: - shows "a \ b \ a \ b" - unfolding fresh_def supp_atom by simp - -instance atom :: fs -by default (simp add: supp_atom) - - -section {* Type @{typ perm} is finitely-supported. *} - -lemma perm_swap_eq: - shows "(a \ b) \ p = p \ (p \ (a \ b)) = (a \ b)" -unfolding permute_perm_def -by (metis add_diff_cancel minus_perm_def) - -lemma supports_perm: - shows "{a. p \ a \ a} supports p" - unfolding supports_def - by (simp add: perm_swap_eq swap_eqvt) - -lemma finite_perm_lemma: - shows "finite {a::atom. p \ a \ a}" - using finite_Rep_perm [of p] - unfolding permute_atom_def . - -lemma supp_perm: - shows "supp p = {a. p \ a \ a}" -apply (rule finite_supp_unique) -apply (rule supports_perm) -apply (rule finite_perm_lemma) -apply (simp add: perm_swap_eq swap_eqvt) -apply (auto simp add: expand_perm_eq swap_atom) -done - -lemma fresh_perm: - shows "a \ p \ p \ a = a" -unfolding fresh_def by (simp add: supp_perm) - -lemma supp_swap: - shows "supp (a \ b) = (if a = b \ sort_of a \ sort_of b then {} else {a, b})" - by (auto simp add: supp_perm swap_atom) - -lemma fresh_zero_perm: - shows "a \ (0::perm)" - unfolding fresh_perm by simp - -lemma supp_zero_perm: - shows "supp (0::perm) = {}" - unfolding supp_perm by simp - -lemma supp_plus_perm: - fixes p q::perm - shows "supp (p + q) \ supp p \ supp q" - by (auto simp add: supp_perm) - -lemma supp_minus_perm: - fixes p::perm - shows "supp (- p) = supp p" - apply(auto simp add: supp_perm) - apply(metis permute_minus_cancel)+ - done - -instance perm :: fs -by default (simp add: supp_perm finite_perm_lemma) - - -section {* Finite Support instances for other types *} - -subsection {* Type @{typ "'a \ 'b"} is finitely-supported. *} - -lemma supp_Pair: - shows "supp (x, y) = supp x \ supp y" - by (simp add: supp_def Collect_imp_eq Collect_neg_eq) - -lemma fresh_Pair: - shows "a \ (x, y) \ a \ x \ a \ y" - by (simp add: fresh_def supp_Pair) - -instance "*" :: (fs, fs) fs -apply default -apply (induct_tac x) -apply (simp add: supp_Pair finite_supp) -done - -subsection {* Type @{typ "'a + 'b"} is finitely supported *} - -lemma supp_Inl: - shows "supp (Inl x) = supp x" - by (simp add: supp_def) - -lemma supp_Inr: - shows "supp (Inr x) = supp x" - by (simp add: supp_def) - -lemma fresh_Inl: - shows "a \ Inl x \ a \ x" - by (simp add: fresh_def supp_Inl) - -lemma fresh_Inr: - shows "a \ Inr y \ a \ y" - by (simp add: fresh_def supp_Inr) - -instance "+" :: (fs, fs) fs -apply default -apply (induct_tac x) -apply (simp_all add: supp_Inl supp_Inr finite_supp) -done - -subsection {* Type @{typ "'a option"} is finitely supported *} - -lemma supp_None: - shows "supp None = {}" -by (simp add: supp_def) - -lemma supp_Some: - shows "supp (Some x) = supp x" - by (simp add: supp_def) - -lemma fresh_None: - shows "a \ None" - by (simp add: fresh_def supp_None) - -lemma fresh_Some: - shows "a \ Some x \ a \ x" - by (simp add: fresh_def supp_Some) - -instance option :: (fs) fs -apply default -apply (induct_tac x) -apply (simp_all add: supp_None supp_Some finite_supp) -done - -subsubsection {* Type @{typ "'a list"} is finitely supported *} - -lemma supp_Nil: - shows "supp [] = {}" - by (simp add: supp_def) - -lemma supp_Cons: - shows "supp (x # xs) = supp x \ supp xs" -by (simp add: supp_def Collect_imp_eq Collect_neg_eq) - -lemma fresh_Nil: - shows "a \ []" - by (simp add: fresh_def supp_Nil) - -lemma fresh_Cons: - shows "a \ (x # xs) \ a \ x \ a \ xs" - by (simp add: fresh_def supp_Cons) - -instance list :: (fs) fs -apply default -apply (induct_tac x) -apply (simp_all add: supp_Nil supp_Cons finite_supp) -done - -section {* Support and freshness for applications *} - -lemma supp_fun_app: - shows "supp (f x) \ (supp f) \ (supp x)" -proof (rule subsetCI) - fix a::"atom" - assume a: "a \ supp (f x)" - assume b: "a \ supp f \ supp x" - then have "finite {b. (a \ b) \ f \ f}" "finite {b. (a \ b) \ x \ x}" - unfolding supp_def by auto - then have "finite ({b. (a \ b) \ f \ f} \ {b. (a \ b) \ x \ x})" by simp - moreover - have "{b. ((a \ b) \ f) ((a \ b) \ x) \ f x} \ ({b. (a \ b) \ f \ f} \ {b. (a \ b) \ x \ x})" - by auto - ultimately have "finite {b. ((a \ b) \ f) ((a \ b) \ x) \ f x}" - using finite_subset by auto - then have "a \ supp (f x)" unfolding supp_def - by (simp add: permute_fun_app_eq) - with a show "False" by simp -qed - -lemma fresh_fun_app: - shows "a \ (f, x) \ a \ f x" -unfolding fresh_def -using supp_fun_app -by (auto simp add: supp_Pair) - -lemma fresh_fun_eqvt_app: - assumes a: "\p. p \ f = f" - shows "a \ x \ a \ f x" -proof - - from a have b: "supp f = {}" - unfolding supp_def by simp - show "a \ x \ a \ f x" - unfolding fresh_def - using supp_fun_app b - by auto -qed - -end +/home/cu200/Isabelle/nominal-huffman/Nominal2_Base.thy \ No newline at end of file diff -r d5d887bb986a -r 8de99358f309 Quot/Nominal/Nominal2_Eqvt.thy --- a/Quot/Nominal/Nominal2_Eqvt.thy Thu Feb 04 14:55:52 2010 +0100 +++ b/Quot/Nominal/Nominal2_Eqvt.thy Thu Feb 04 15:16:34 2010 +0100 @@ -1,298 +1,1 @@ -(* Title: Nominal2_Eqvt - Authors: Brian Huffman, Christian Urban - - Equivariance, Supp and Fresh Lemmas for Operators. -*) -theory Nominal2_Eqvt -imports Nominal2_Base -uses ("nominal_thmdecls.ML") - ("nominal_permeq.ML") -begin - -section {* Logical Operators *} - - -lemma eq_eqvt: - shows "p \ (x = y) \ (p \ x) = (p \ y)" - unfolding permute_eq_iff permute_bool_def .. - -lemma if_eqvt: - shows "p \ (if b then x else y) = (if p \ b then p \ x else p \ y)" - by (simp add: permute_fun_def permute_bool_def) - -lemma True_eqvt: - shows "p \ True = True" - unfolding permute_bool_def .. - -lemma False_eqvt: - shows "p \ False = False" - unfolding permute_bool_def .. - -lemma imp_eqvt: - shows "p \ (A \ B) = ((p \ A) \ (p \ B))" - by (simp add: permute_bool_def) - -lemma conj_eqvt: - shows "p \ (A \ B) = ((p \ A) \ (p \ B))" - by (simp add: permute_bool_def) - -lemma disj_eqvt: - shows "p \ (A \ B) = ((p \ A) \ (p \ B))" - by (simp add: permute_bool_def) - -lemma Not_eqvt: - shows "p \ (\ A) = (\ (p \ A))" - by (simp add: permute_bool_def) - -lemma all_eqvt: - shows "p \ (\x. P x) = (\x. (p \ P) x)" - unfolding permute_fun_def permute_bool_def - by (auto, drule_tac x="p \ x" in spec, simp) - -lemma all_eqvt2: - shows "p \ (\x. P x) = (\x. p \ P (- p \ x))" - unfolding permute_fun_def permute_bool_def - by (auto, drule_tac x="p \ x" in spec, simp) - -lemma ex_eqvt: - shows "p \ (\x. P x) = (\x. (p \ P) x)" - unfolding permute_fun_def permute_bool_def - by (auto, rule_tac x="p \ x" in exI, simp) - -lemma ex_eqvt2: - shows "p \ (\x. P x) = (\x. p \ P (- p \ x))" - unfolding permute_fun_def permute_bool_def - by (auto, rule_tac x="p \ x" in exI, simp) - -lemma ex1_eqvt: - shows "p \ (\!x. P x) = (\!x. (p \ P) x)" - unfolding Ex1_def - by (simp add: ex_eqvt permute_fun_def conj_eqvt all_eqvt imp_eqvt eq_eqvt) - -lemma ex1_eqvt2: - shows "p \ (\!x. P x) = (\!x. p \ P (- p \ x))" - unfolding Ex1_def ex_eqvt2 conj_eqvt all_eqvt2 imp_eqvt eq_eqvt - by simp - -lemma the_eqvt: - assumes unique: "\!x. P x" - shows "p \ (THE x. P x) = (THE x. p \ P (- p \ x))" - apply(rule the1_equality [symmetric]) - apply(simp add: ex1_eqvt2[symmetric]) - apply(simp add: permute_bool_def unique) - apply(simp add: permute_bool_def) - apply(rule theI'[OF unique]) - done - -section {* Set Operations *} - -lemma mem_eqvt: - shows "p \ (x \ A) \ (p \ x) \ (p \ A)" - unfolding mem_def permute_fun_def by simp - -lemma not_mem_eqvt: - shows "p \ (x \ A) \ (p \ x) \ (p \ A)" - unfolding mem_def permute_fun_def by (simp add: Not_eqvt) - -lemma Collect_eqvt: - shows "p \ {x. P x} = {x. (p \ P) x}" - unfolding Collect_def permute_fun_def .. - -lemma Collect_eqvt2: - shows "p \ {x. P x} = {x. p \ (P (-p \ x))}" - unfolding Collect_def permute_fun_def .. - -lemma empty_eqvt: - shows "p \ {} = {}" - unfolding empty_def Collect_eqvt2 False_eqvt .. - -lemma supp_set_empty: - shows "supp {} = {}" - by (simp add: supp_def empty_eqvt) - -lemma fresh_set_empty: - shows "a \ {}" - by (simp add: fresh_def supp_set_empty) - -lemma UNIV_eqvt: - shows "p \ UNIV = UNIV" - unfolding UNIV_def Collect_eqvt2 True_eqvt .. - -lemma union_eqvt: - shows "p \ (A \ B) = (p \ A) \ (p \ B)" - unfolding Un_def Collect_eqvt2 disj_eqvt mem_eqvt by simp - -lemma inter_eqvt: - shows "p \ (A \ B) = (p \ A) \ (p \ B)" - unfolding Int_def Collect_eqvt2 conj_eqvt mem_eqvt by simp - -lemma Diff_eqvt: - fixes A B :: "'a::pt set" - shows "p \ (A - B) = p \ A - p \ B" - unfolding set_diff_eq Collect_eqvt2 conj_eqvt Not_eqvt mem_eqvt by simp - -lemma Compl_eqvt: - fixes A :: "'a::pt set" - shows "p \ (- A) = - (p \ A)" - unfolding Compl_eq_Diff_UNIV Diff_eqvt UNIV_eqvt .. - -lemma insert_eqvt: - shows "p \ (insert x A) = insert (p \ x) (p \ A)" - unfolding permute_set_eq_image image_insert .. - -lemma vimage_eqvt: - shows "p \ (f -` A) = (p \ f) -` (p \ A)" - unfolding vimage_def permute_fun_def [where f=f] - unfolding Collect_eqvt2 mem_eqvt .. - -lemma image_eqvt: - shows "p \ (f ` A) = (p \ f) ` (p \ A)" - unfolding permute_set_eq_image - unfolding permute_fun_def [where f=f] - by (simp add: image_image) - -lemma finite_permute_iff: - shows "finite (p \ A) \ finite A" - unfolding permute_set_eq_vimage - using bij_permute by (rule finite_vimage_iff) - -lemma finite_eqvt: - shows "p \ finite A = finite (p \ A)" - unfolding finite_permute_iff permute_bool_def .. - - -section {* List Operations *} - -lemma append_eqvt: - shows "p \ (xs @ ys) = (p \ xs) @ (p \ ys)" - by (induct xs) auto - -lemma supp_append: - shows "supp (xs @ ys) = supp xs \ supp ys" - by (induct xs) (auto simp add: supp_Nil supp_Cons) - -lemma fresh_append: - shows "a \ (xs @ ys) \ a \ xs \ a \ ys" - by (induct xs) (simp_all add: fresh_Nil fresh_Cons) - -lemma rev_eqvt: - shows "p \ (rev xs) = rev (p \ xs)" - by (induct xs) (simp_all add: append_eqvt) - -lemma supp_rev: - shows "supp (rev xs) = supp xs" - by (induct xs) (auto simp add: supp_append supp_Cons supp_Nil) - -lemma fresh_rev: - shows "a \ rev xs \ a \ xs" - by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil) - -lemma set_eqvt: - shows "p \ (set xs) = set (p \ xs)" - by (induct xs) (simp_all add: empty_eqvt insert_eqvt) - -(* needs finite support premise -lemma supp_set: - fixes x :: "'a::pt" - shows "supp (set xs) = supp xs" -*) - - -section {* Product Operations *} - -lemma fst_eqvt: - "p \ (fst x) = fst (p \ x)" - by (cases x) simp - -lemma snd_eqvt: - "p \ (snd x) = snd (p \ x)" - by (cases x) simp - - -section {* Units *} - -lemma supp_unit: - shows "supp () = {}" - by (simp add: supp_def) - -lemma fresh_unit: - shows "a \ ()" - by (simp add: fresh_def supp_unit) - -section {* Equivariance automation *} - -text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_force} *} - -use "nominal_thmdecls.ML" -setup "Nominal_ThmDecls.setup" - -lemmas [eqvt] = - (* connectives *) - eq_eqvt if_eqvt imp_eqvt disj_eqvt conj_eqvt Not_eqvt - True_eqvt False_eqvt ex_eqvt all_eqvt - imp_eqvt [folded induct_implies_def] - - (* nominal *) - permute_eqvt supp_eqvt fresh_eqvt - permute_pure - - (* datatypes *) - permute_prod.simps - fst_eqvt snd_eqvt - - (* sets *) - empty_eqvt UNIV_eqvt union_eqvt inter_eqvt - Diff_eqvt Compl_eqvt insert_eqvt - -thm eqvts -thm eqvts_raw - -text {* helper lemmas for the eqvt_tac *} - -definition - "unpermute p = permute (- p)" - -lemma eqvt_apply: - fixes f :: "'a::pt \ 'b::pt" - and x :: "'a::pt" - shows "p \ (f x) \ (p \ f) (p \ x)" - unfolding permute_fun_def by simp - -lemma eqvt_lambda: - fixes f :: "'a::pt \ 'b::pt" - shows "p \ (\x. f x) \ (\x. p \ (f (unpermute p x)))" - unfolding permute_fun_def unpermute_def by simp - -lemma eqvt_bound: - shows "p \ unpermute p x \ x" - unfolding unpermute_def by simp - -use "nominal_permeq.ML" - - -lemma "p \ (A \ B = C)" -apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) -oops - -lemma "p \ (\(x::'a::pt). A \ (B::'a \ bool) x = C) = foo" -apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) -oops - -lemma "p \ (\x y. \z. x = z \ x = y \ z \ x) = foo" -apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) -oops - -lemma "p \ (\f x. f (g (f x))) = foo" -apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) -oops - -lemma "p \ (\q. q \ (r \ x)) = foo" -apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) -oops - -lemma "p \ (q \ r \ x) = foo" -apply (tactic {* Nominal_Permeq.eqvt_tac @{context} 1 *}) -oops - - -end \ No newline at end of file +/home/cu200/Isabelle/nominal-huffman/Nominal2_Eqvt.thy \ No newline at end of file diff -r d5d887bb986a -r 8de99358f309 Quot/Nominal/Nominal2_Supp.thy --- a/Quot/Nominal/Nominal2_Supp.thy Thu Feb 04 14:55:52 2010 +0100 +++ b/Quot/Nominal/Nominal2_Supp.thy Thu Feb 04 15:16:34 2010 +0100 @@ -1,375 +1,1 @@ -(* Title: Nominal2_Supp - Authors: Brian Huffman, Christian Urban - - Supplementary Lemmas and Definitions for - Nominal Isabelle. -*) -theory Nominal2_Supp -imports Nominal2_Base Nominal2_Eqvt Nominal2_Atoms -begin - - -section {* Fresh-Star *} - -text {* The fresh-star generalisation of fresh is used in strong - induction principles. *} - -definition - fresh_star :: "atom set \ 'a::pt \ bool" ("_ \* _" [80,80] 80) -where - "xs \* c \ \x \ xs. x \ c" - -lemma fresh_star_prod: - fixes xs::"atom set" - shows "xs \* (a, b) = (xs \* a \ xs \* b)" - by (auto simp add: fresh_star_def fresh_Pair) - -lemma fresh_star_union: - shows "(xs \ ys) \* c = (xs \* c \ ys \* c)" - by (auto simp add: fresh_star_def) - -lemma fresh_star_insert: - shows "(insert x ys) \* c = (x \ c \ ys \* c)" - by (auto simp add: fresh_star_def) - -lemma fresh_star_Un_elim: - "((S \ T) \* c \ PROP C) \ (S \* c \ T \* c \ PROP C)" - unfolding fresh_star_def - apply(rule) - apply(erule meta_mp) - apply(auto) - done - -lemma fresh_star_insert_elim: - "(insert x S \* c \ PROP C) \ (x \ c \ S \* c \ PROP C)" - unfolding fresh_star_def - by rule (simp_all add: fresh_star_def) - -lemma fresh_star_empty_elim: - "({} \* c \ PROP C) \ PROP C" - by (simp add: fresh_star_def) - -lemma fresh_star_unit_elim: - shows "(a \* () \ PROP C) \ PROP C" - by (simp add: fresh_star_def fresh_unit) - -lemma fresh_star_prod_elim: - shows "(a \* (x, y) \ PROP C) \ (a \* x \ a \* y \ PROP C)" - by (rule, simp_all add: fresh_star_prod) - - -section {* Avoiding of atom sets *} - -text {* - For every set of atoms, there is another set of atoms - avoiding a finitely supported c and there is a permutation - which 'translates' between both sets. -*} - -lemma at_set_avoiding_aux: - fixes Xs::"atom set" - and As::"atom set" - assumes b: "Xs \ As" - and c: "finite As" - shows "\p. (p \ Xs) \ As = {} \ (supp p) \ (Xs \ (p \ Xs))" -proof - - from b c have "finite Xs" by (rule finite_subset) - then show ?thesis using b - proof (induct rule: finite_subset_induct) - case empty - have "0 \ {} \ As = {}" by simp - moreover - have "supp (0::perm) \ {} \ 0 \ {}" by (simp add: supp_zero_perm) - ultimately show ?case by blast - next - case (insert x Xs) - then obtain p where - p1: "(p \ Xs) \ As = {}" and - p2: "supp p \ (Xs \ (p \ Xs))" by blast - from `x \ As` p1 have "x \ p \ Xs" by fast - with `x \ Xs` p2 have "x \ supp p" by fast - hence px: "p \ x = x" unfolding supp_perm by simp - have "finite (As \ p \ Xs)" - using `finite As` `finite Xs` - by (simp add: permute_set_eq_image) - then obtain y where "y \ (As \ p \ Xs)" "sort_of y = sort_of x" - by (rule obtain_atom) - hence y: "y \ As" "y \ p \ Xs" "sort_of y = sort_of x" - by simp_all - let ?q = "(x \ y) + p" - have q: "?q \ insert x Xs = insert y (p \ Xs)" - unfolding insert_eqvt - using `p \ x = x` `sort_of y = sort_of x` - using `x \ p \ Xs` `y \ p \ Xs` - by (simp add: swap_atom swap_set_not_in) - have "?q \ insert x Xs \ As = {}" - using `y \ As` `p \ Xs \ As = {}` - unfolding q by simp - moreover - have "supp ?q \ insert x Xs \ ?q \ insert x Xs" - using p2 unfolding q - apply (intro subset_trans [OF supp_plus_perm]) - apply (auto simp add: supp_swap) - done - ultimately show ?case by blast - qed -qed - -lemma at_set_avoiding: - assumes a: "finite Xs" - and b: "finite (supp c)" - obtains p::"perm" where "(p \ Xs)\*c" and "(supp p) \ (Xs \ (p \ Xs))" - using a b at_set_avoiding_aux [where Xs="Xs" and As="Xs \ supp c"] - unfolding fresh_star_def fresh_def by blast - - -section {* The freshness lemma according to Andrew Pitts *} - -lemma fresh_conv_MOST: - shows "a \ x \ (MOST b. (a \ b) \ x = x)" - unfolding fresh_def supp_def MOST_iff_cofinite by simp - -lemma fresh_apply: - assumes "a \ f" and "a \ x" - shows "a \ f x" - using assms unfolding fresh_conv_MOST - unfolding permute_fun_app_eq [where f=f] - by (elim MOST_rev_mp, simp) - -lemma freshness_lemma: - fixes h :: "'a::at \ 'b::pt" - assumes a: "\a. atom a \ (h, h a)" - shows "\x. \a. atom a \ h \ h a = x" -proof - - from a obtain b where a1: "atom b \ h" and a2: "atom b \ h b" - by (auto simp add: fresh_Pair) - show "\x. \a. atom a \ h \ h a = x" - proof (intro exI allI impI) - fix a :: 'a - assume a3: "atom a \ h" - show "h a = h b" - proof (cases "a = b") - assume "a = b" - thus "h a = h b" by simp - next - assume "a \ b" - hence "atom a \ b" by (simp add: fresh_at) - with a3 have "atom a \ h b" by (rule fresh_apply) - with a2 have d1: "(atom b \ atom a) \ (h b) = (h b)" - by (rule swap_fresh_fresh) - from a1 a3 have d2: "(atom b \ atom a) \ h = h" - by (rule swap_fresh_fresh) - from d1 have "h b = (atom b \ atom a) \ (h b)" by simp - also have "\ = ((atom b \ atom a) \ h) ((atom b \ atom a) \ b)" - by (rule permute_fun_app_eq) - also have "\ = h a" - using d2 by simp - finally show "h a = h b" by simp - qed - qed -qed - -lemma freshness_lemma_unique: - fixes h :: "'a::at \ 'b::pt" - assumes a: "\a. atom a \ (h, h a)" - shows "\!x. \a. atom a \ h \ h a = x" -proof (rule ex_ex1I) - from a show "\x. \a. atom a \ h \ h a = x" - by (rule freshness_lemma) -next - fix x y - assume x: "\a. atom a \ h \ h a = x" - assume y: "\a. atom a \ h \ h a = y" - from a x y show "x = y" - by (auto simp add: fresh_Pair) -qed - -text {* packaging the freshness lemma into a function *} - -definition - fresh_fun :: "('a::at \ 'b::pt) \ 'b" -where - "fresh_fun h = (THE x. \a. atom a \ h \ h a = x)" - -lemma fresh_fun_app: - fixes h :: "'a::at \ 'b::pt" - assumes a: "\a. atom a \ (h, h a)" - assumes b: "atom a \ h" - shows "fresh_fun h = h a" -unfolding fresh_fun_def -proof (rule the_equality) - show "\a'. atom a' \ h \ h a' = h a" - proof (intro strip) - fix a':: 'a - assume c: "atom a' \ h" - from a have "\x. \a. atom a \ h \ h a = x" by (rule freshness_lemma) - with b c show "h a' = h a" by auto - qed -next - fix fr :: 'b - assume "\a. atom a \ h \ h a = fr" - with b show "fr = h a" by auto -qed - -lemma fresh_fun_app': - fixes h :: "'a::at \ 'b::pt" - assumes a: "atom a \ h" "atom a \ h a" - shows "fresh_fun h = h a" - apply (rule fresh_fun_app) - apply (auto simp add: fresh_Pair intro: a) - done - -lemma fresh_fun_eqvt: - fixes h :: "'a::at \ 'b::pt" - assumes a: "\a. atom a \ (h, h a)" - shows "p \ (fresh_fun h) = fresh_fun (p \ h)" - using a - apply (clarsimp simp add: fresh_Pair) - apply (subst fresh_fun_app', assumption+) - apply (drule fresh_permute_iff [where p=p, THEN iffD2]) - apply (drule fresh_permute_iff [where p=p, THEN iffD2]) - apply (simp add: atom_eqvt permute_fun_app_eq [where f=h]) - apply (erule (1) fresh_fun_app' [symmetric]) - done - -lemma fresh_fun_supports: - fixes h :: "'a::at \ 'b::pt" - assumes a: "\a. atom a \ (h, h a)" - shows "(supp h) supports (fresh_fun h)" - apply (simp add: supports_def fresh_def [symmetric]) - apply (simp add: fresh_fun_eqvt [OF a] swap_fresh_fresh) - done - -notation fresh_fun (binder "FRESH " 10) - -lemma FRESH_f_iff: - fixes P :: "'a::at \ 'b::pure" - fixes f :: "'b \ 'c::pure" - assumes P: "finite (supp P)" - shows "(FRESH x. f (P x)) = f (FRESH x. P x)" -proof - - obtain a::'a where "atom a \ supp P" - using P by (rule obtain_at_base) - hence "atom a \ P" - by (simp add: fresh_def) - show "(FRESH x. f (P x)) = f (FRESH x. P x)" - apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh]) - apply (cut_tac `atom a \ P`) - apply (simp add: fresh_conv_MOST) - apply (elim MOST_rev_mp, rule MOST_I, clarify) - apply (simp add: permute_fun_def permute_pure expand_fun_eq) - apply (subst fresh_fun_app' [where a=a, OF `atom a \ P` pure_fresh]) - apply (rule refl) - done -qed - -lemma FRESH_binop_iff: - fixes P :: "'a::at \ 'b::pure" - fixes Q :: "'a::at \ 'c::pure" - fixes binop :: "'b \ 'c \ 'd::pure" - assumes P: "finite (supp P)" - and Q: "finite (supp Q)" - shows "(FRESH x. binop (P x) (Q x)) = binop (FRESH x. P x) (FRESH x. Q x)" -proof - - from assms have "finite (supp P \ supp Q)" by simp - then obtain a::'a where "atom a \ (supp P \ supp Q)" - by (rule obtain_at_base) - hence "atom a \ P" and "atom a \ Q" - by (simp_all add: fresh_def) - show ?thesis - apply (subst fresh_fun_app' [where a=a, OF _ pure_fresh]) - apply (cut_tac `atom a \ P` `atom a \ Q`) - apply (simp add: fresh_conv_MOST) - apply (elim MOST_rev_mp, rule MOST_I, clarify) - apply (simp add: permute_fun_def permute_pure expand_fun_eq) - apply (subst fresh_fun_app' [where a=a, OF `atom a \ P` pure_fresh]) - apply (subst fresh_fun_app' [where a=a, OF `atom a \ Q` pure_fresh]) - apply (rule refl) - done -qed - -lemma FRESH_conj_iff: - fixes P Q :: "'a::at \ bool" - assumes P: "finite (supp P)" and Q: "finite (supp Q)" - shows "(FRESH x. P x \ Q x) \ (FRESH x. P x) \ (FRESH x. Q x)" -using P Q by (rule FRESH_binop_iff) - -lemma FRESH_disj_iff: - fixes P Q :: "'a::at \ bool" - assumes P: "finite (supp P)" and Q: "finite (supp Q)" - shows "(FRESH x. P x \ Q x) \ (FRESH x. P x) \ (FRESH x. Q x)" -using P Q by (rule FRESH_binop_iff) - - -section {* An example of a function without finite support *} - -primrec - nat_of :: "atom \ nat" -where - "nat_of (Atom s n) = n" - -lemma atom_eq_iff: - fixes a b :: atom - shows "a = b \ sort_of a = sort_of b \ nat_of a = nat_of b" - by (induct a, induct b, simp) - -lemma not_fresh_nat_of: - shows "\ a \ nat_of" -unfolding fresh_def supp_def -proof (clarsimp) - assume "finite {b. (a \ b) \ nat_of \ nat_of}" - hence "finite ({a} \ {b. (a \ b) \ nat_of \ nat_of})" - by simp - then obtain b where - b1: "b \ a" and - b2: "sort_of b = sort_of a" and - b3: "(a \ b) \ nat_of = nat_of" - by (rule obtain_atom) auto - have "nat_of a = (a \ b) \ (nat_of a)" by (simp add: permute_nat_def) - also have "\ = ((a \ b) \ nat_of) ((a \ b) \ a)" by (simp add: permute_fun_app_eq) - also have "\ = nat_of ((a \ b) \ a)" using b3 by simp - also have "\ = nat_of b" using b2 by simp - finally have "nat_of a = nat_of b" by simp - with b2 have "a = b" by (simp add: atom_eq_iff) - with b1 show "False" by simp -qed - -lemma supp_nat_of: - shows "supp nat_of = UNIV" - using not_fresh_nat_of [unfolded fresh_def] by auto - - -section {* Support for sets of atoms *} - -lemma supp_finite_atom_set: - fixes S::"atom set" - assumes "finite S" - shows "supp S = S" - apply(rule finite_supp_unique) - apply(simp add: supports_def) - apply(simp add: swap_set_not_in) - apply(rule assms) - apply(simp add: swap_set_in) -done - - -(* -lemma supp_infinite: - fixes S::"atom set" - assumes asm: "finite (UNIV - S)" - shows "(supp S) = (UNIV - S)" -apply(rule finite_supp_unique) -apply(auto simp add: supports_def permute_set_eq swap_atom)[1] -apply(rule asm) -apply(auto simp add: permute_set_eq swap_atom)[1] -done - -lemma supp_infinite_coinfinite: - fixes S::"atom set" - assumes asm1: "infinite S" - and asm2: "infinite (UNIV-S)" - shows "(supp S) = (UNIV::atom set)" -*) - - -end \ No newline at end of file +/home/cu200/Isabelle/nominal-huffman/Nominal2_Supp.thy \ No newline at end of file