--- a/Quotient-Paper/Paper.thy Thu May 27 16:33:10 2010 +0200
+++ b/Quotient-Paper/Paper.thy Thu May 27 16:53:12 2010 +0200
@@ -415,21 +415,46 @@
subsection {* Proof of Regularization *}
text {*
-Example of non-regularizable theorem ($0 = 1$).
+ Example of non-regularizable theorem ($0 = 1$).
+
-Separtion of regularization from injection thanks to the following 2 lemmas:
-\begin{lemma}
-If @{term R2} is an equivalence relation, then:
-\begin{eqnarray}
-@{thm (rhs) ball_reg_eqv_range[no_vars]} & = & @{thm (lhs) ball_reg_eqv_range[no_vars]}\\
-@{thm (rhs) bex_reg_eqv_range[no_vars]} & = & @{thm (lhs) bex_reg_eqv_range[no_vars]}
-\end{eqnarray}
-\end{lemma}
+ Separtion of regularization from injection thanks to the following 2 lemmas:
+ \begin{lemma}
+ If @{term R2} is an equivalence relation, then:
+ \begin{eqnarray}
+ @{thm (rhs) ball_reg_eqv_range[no_vars]} & = & @{thm (lhs) ball_reg_eqv_range[no_vars]}\\
+ @{thm (rhs) bex_reg_eqv_range[no_vars]} & = & @{thm (lhs) bex_reg_eqv_range[no_vars]}
+ \end{eqnarray}
+ \end{lemma}
+
+ Other lemmas used in regularization:
+ @{thm [display] ball_reg_eqv[no_vars]}
+ @{thm [display] bex_reg_eqv[no_vars]}
+ @{thm [display] babs_reg_eqv[no_vars]}
+ @{thm [display] babs_simp[no_vars]}
+
+ @{thm [display] ball_reg_right[no_vars]}
+ @{thm [display] bex_reg_left[no_vars]}
+ @{thm [display] bex1_bexeq_reg[no_vars]}
*}
subsection {* Injection *}
+text {*
+
+ The 2 key lemmas are:
+
+ @{thm [display] apply_rsp[no_vars]}
+ @{thm [display] rep_abs_rsp[no_vars]}
+
+
+
+*}
+
+
+
+
subsection {* Cleaning *}
text {* Preservation of quantifiers, abstractions, relations, quotient-constants