All eq_reflections apart from the one of 'id_apply' can be removed.
authorCezary Kaliszyk <kaliszyk@in.tum.de>
Tue, 26 Jan 2010 09:28:32 +0100
changeset 930 68c1f378a70a
parent 929 e812f58fd128
child 931 0879d144aaa3
All eq_reflections apart from the one of 'id_apply' can be removed.
Quot/QuotMain.thy
Quot/quotient_tacs.ML
--- a/Quot/QuotMain.thy	Tue Jan 26 08:55:55 2010 +0100
+++ b/Quot/QuotMain.thy	Tue Jan 26 09:28:32 2010 +0100
@@ -47,8 +47,7 @@
 qed
 
 theorem thm10:
-  shows "abs (rep a) \<equiv> a"
-  apply  (rule eq_reflection)
+  shows "abs (rep a) = a"
   unfolding abs_def rep_def
 proof -
   from rep_prop
@@ -112,10 +111,10 @@
 text {* Lemmas about simplifying id's. *}
 lemmas [id_simps] =
   id_def[symmetric]
-  fun_map_id[THEN eq_reflection]
+  fun_map_id
   id_apply[THEN eq_reflection]
-  id_o[THEN eq_reflection]
-  o_id[THEN eq_reflection]
+  id_o
+  o_id
   eq_comp_r
 
 text {* Translation functions for the lifting process. *}
--- a/Quot/quotient_tacs.ML	Tue Jan 26 08:55:55 2010 +0100
+++ b/Quot/quotient_tacs.ML	Tue Jan 26 09:28:32 2010 +0100
@@ -526,8 +526,7 @@
 
   fun mk_simps thms = (mk_minimal_ss lthy) addsimps thms addSolver quotient_solver
   val ss1 = mk_simps (defs @ prs @ @{thms babs_prs all_prs ex_prs ex1_prs})
-  val ss2 = mk_simps (@{thms Quotient_abs_rep[THEN eq_reflection] 
-                             Quotient_rel_rep[THEN eq_reflection] ex1_prs} @ ids)
+  val ss2 = mk_simps (@{thms Quotient_abs_rep Quotient_rel_rep ex1_prs} @ ids)
 in
   EVERY' [simp_tac ss1,
           fun_map_tac lthy,