Quot/QuotMain.thy
changeset 930 68c1f378a70a
parent 925 8d51795ef54d
child 939 ce774af6b964
equal deleted inserted replaced
929:e812f58fd128 930:68c1f378a70a
    45   then show "R (Eps (R x)) = R x"
    45   then show "R (Eps (R x)) = R x"
    46     using equivp unfolding equivp_def by simp
    46     using equivp unfolding equivp_def by simp
    47 qed
    47 qed
    48 
    48 
    49 theorem thm10:
    49 theorem thm10:
    50   shows "abs (rep a) \<equiv> a"
    50   shows "abs (rep a) = a"
    51   apply  (rule eq_reflection)
       
    52   unfolding abs_def rep_def
    51   unfolding abs_def rep_def
    53 proof -
    52 proof -
    54   from rep_prop
    53   from rep_prop
    55   obtain x where eq: "Rep a = R x" by auto
    54   obtain x where eq: "Rep a = R x" by auto
    56   have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp
    55   have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp
   110 
   109 
   111 
   110 
   112 text {* Lemmas about simplifying id's. *}
   111 text {* Lemmas about simplifying id's. *}
   113 lemmas [id_simps] =
   112 lemmas [id_simps] =
   114   id_def[symmetric]
   113   id_def[symmetric]
   115   fun_map_id[THEN eq_reflection]
   114   fun_map_id
   116   id_apply[THEN eq_reflection]
   115   id_apply[THEN eq_reflection]
   117   id_o[THEN eq_reflection]
   116   id_o
   118   o_id[THEN eq_reflection]
   117   o_id
   119   eq_comp_r
   118   eq_comp_r
   120 
   119 
   121 text {* Translation functions for the lifting process. *}
   120 text {* Translation functions for the lifting process. *}
   122 use "quotient_term.ML" 
   121 use "quotient_term.ML" 
   123 
   122