Definitions folded first.
authorCezary Kaliszyk <kaliszyk@in.tum.de>
Sun, 06 Dec 2009 00:00:47 +0100
changeset 567 5dffcd087e30
parent 566 4eca2c3e59f7
child 569 e121ac0028f8
child 573 14682786c356
Definitions folded first.
LFex.thy
LamEx.thy
QuotMain.thy
--- a/LFex.thy	Sat Dec 05 23:35:09 2009 +0100
+++ b/LFex.thy	Sun Dec 06 00:00:47 2009 +0100
@@ -220,6 +220,7 @@
   val quot = @{thms Quotient_KIND Quotient_TY Quotient_TRM}
   val rel_refl = map (fn x => @{thm equivp_reflp} OF [x]) @{thms alpha_equivps}
   val reps_same = map (fn x => @{thm Quotient_rel_rep} OF [x]) quot
+  val trans2 = map (fn x => @{thm equals_rsp} OF [x]) quot
 *}
 
 lemma 
@@ -256,12 +257,11 @@
          ((x5 :: TRM) = x6 \<longrightarrow> P3 x5 x6)"
 using a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
 apply - 
-apply(tactic {* lift_tac @{context} @{thm akind_aty_atrm.induct} @{thms alpha_equivps} 1 *})
-(*apply(tactic {* regularize_tac @{context} @{thms alpha_equivps} 1 *})
+apply(tactic {* procedure_tac @{context} @{thm akind_aty_atrm.induct} 1 *})
+apply(tactic {* regularize_tac @{context} @{thms alpha_equivps} 1 *})
 apply(tactic {* all_inj_repabs_tac @{context} rel_refl trans2 1 *})
+apply(fold perm_kind_def perm_ty_def perm_trm_def FV_ty_def[simplified id_simps] FV_kind_def[simplified id_simps] FV_trm_def[simplified id_simps])
 apply(tactic {* clean_tac @{context} 1 *})
-*)
-(*apply(tactic {* all_inj_repabs_tac @{context} rel_refl trans2 1 *})*)
 (*
 Profiling:
 ML_prf {* fun ith i =  (#concl (fst (Subgoal.focus @{context} i (#goal (Isar.goal ()))))) *}
@@ -270,8 +270,6 @@
 ML_prf {* PolyML.profiling 1 *}
 ML_prf {* profile 2 Seq.list_of ((all_inj_repabs_tac @{context} quot rel_refl trans2 1) (#goal (Isar.goal ()))) *}
 *)
-apply(unfold perm_kind_def perm_ty_def perm_trm_def)
-apply(tactic {* clean_tac @{context} 1 *})
 done
 
 (* Does not work:
--- a/LamEx.thy	Sat Dec 05 23:35:09 2009 +0100
+++ b/LamEx.thy	Sun Dec 06 00:00:47 2009 +0100
@@ -190,14 +190,20 @@
 
 lemma fv_var: "fv (Var (a\<Colon>name)) = {a}"
 apply (tactic {* lift_tac_lam @{context} @{thm rfv_var} 1 *})
+apply (unfold fv_def[simplified id_simps])
+apply (tactic {* clean_tac @{context} 1 *})
 done
 
 lemma fv_app: "fv (App (x\<Colon>lam) (xa\<Colon>lam)) = fv x \<union> fv xa"
 apply (tactic {* lift_tac_lam @{context} @{thm rfv_app} 1 *})
+apply (unfold fv_def[simplified id_simps])
+apply (tactic {* clean_tac @{context} 1 *})
 done
 
 lemma fv_lam: "fv (Lam (a\<Colon>name) (x\<Colon>lam)) = fv x - {a}"
 apply (tactic {* lift_tac_lam @{context} @{thm rfv_lam} 1 *})
+apply (unfold fv_def[simplified id_simps])
+apply (tactic {* clean_tac @{context} 1 *})
 done
 
 lemma a1: "(a\<Colon>name) = (b\<Colon>name) \<Longrightarrow> Var a = Var b"
@@ -210,6 +216,8 @@
 
 lemma a3: "\<lbrakk>(x\<Colon>lam) = [(a\<Colon>name, b\<Colon>name)] \<bullet> (xa\<Colon>lam); a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> Lam a x = Lam b xa"
 apply (tactic {* lift_tac_lam @{context} @{thm a3} 1 *})
+apply (unfold fv_def[simplified id_simps])
+apply (tactic {* clean_tac @{context} 1 *})
 done
 
 lemma alpha_cases: "\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P;
@@ -217,6 +225,8 @@
      \<And>x a b xa. \<lbrakk>a1 = Lam a x; a2 = Lam b xa; x = [(a, b)] \<bullet> xa; a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> P\<rbrakk>
     \<Longrightarrow> P"
 apply (tactic {* lift_tac_lam @{context} @{thm alpha.cases} 1 *})
+apply (unfold fv_def[simplified id_simps])
+apply (tactic {* clean_tac @{context} 1 *})
 done
 
 lemma alpha_induct: "\<lbrakk>(qx\<Colon>lam) = (qxa\<Colon>lam); \<And>(a\<Colon>name) b\<Colon>name. a = b \<Longrightarrow> (qxb\<Colon>lam \<Rightarrow> lam \<Rightarrow> bool) (Var a) (Var b);
@@ -225,6 +235,8 @@
         \<lbrakk>x = [(a, b)] \<bullet> xa; qxb x ([(a, b)] \<bullet> xa); a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> qxb (Lam a x) (Lam b xa)\<rbrakk>
     \<Longrightarrow> qxb qx qxa"
 apply (tactic {* lift_tac_lam @{context} @{thm alpha.induct} 1 *})
+apply (unfold fv_def[simplified id_simps])
+apply (tactic {* clean_tac @{context} 1 *})
 done
 
 lemma var_inject: "(Var a = Var b) = (a = b)"
--- a/QuotMain.thy	Sat Dec 05 23:35:09 2009 +0100
+++ b/QuotMain.thy	Sun Dec 06 00:00:47 2009 +0100
@@ -1105,10 +1105,9 @@
   let
     val thy = ProofContext.theory_of lthy;
     val defs = map (Thm.varifyT o symmetric o #def) (qconsts_dest thy)
-    val thms1 = @{thms all_prs ex_prs}
+    val thms1 = @{thms all_prs ex_prs} @ defs
     val thms2 = @{thms eq_reflection[OF fun_map.simps]} 
                 @ @{thms id_simps Quotient_abs_rep Quotient_rel_rep} 
-                @ defs
     fun simp_ctxt thms = HOL_basic_ss addsimps thms addSolver quotient_solver
     (* FIXME: use of someting smaller than HOL_basic_ss *)
   in