188 apply (tactic {* lift_tac_lam @{context} @{thm pi_lam_com} 1 *}) |
188 apply (tactic {* lift_tac_lam @{context} @{thm pi_lam_com} 1 *}) |
189 done |
189 done |
190 |
190 |
191 lemma fv_var: "fv (Var (a\<Colon>name)) = {a}" |
191 lemma fv_var: "fv (Var (a\<Colon>name)) = {a}" |
192 apply (tactic {* lift_tac_lam @{context} @{thm rfv_var} 1 *}) |
192 apply (tactic {* lift_tac_lam @{context} @{thm rfv_var} 1 *}) |
|
193 apply (unfold fv_def[simplified id_simps]) |
|
194 apply (tactic {* clean_tac @{context} 1 *}) |
193 done |
195 done |
194 |
196 |
195 lemma fv_app: "fv (App (x\<Colon>lam) (xa\<Colon>lam)) = fv x \<union> fv xa" |
197 lemma fv_app: "fv (App (x\<Colon>lam) (xa\<Colon>lam)) = fv x \<union> fv xa" |
196 apply (tactic {* lift_tac_lam @{context} @{thm rfv_app} 1 *}) |
198 apply (tactic {* lift_tac_lam @{context} @{thm rfv_app} 1 *}) |
|
199 apply (unfold fv_def[simplified id_simps]) |
|
200 apply (tactic {* clean_tac @{context} 1 *}) |
197 done |
201 done |
198 |
202 |
199 lemma fv_lam: "fv (Lam (a\<Colon>name) (x\<Colon>lam)) = fv x - {a}" |
203 lemma fv_lam: "fv (Lam (a\<Colon>name) (x\<Colon>lam)) = fv x - {a}" |
200 apply (tactic {* lift_tac_lam @{context} @{thm rfv_lam} 1 *}) |
204 apply (tactic {* lift_tac_lam @{context} @{thm rfv_lam} 1 *}) |
|
205 apply (unfold fv_def[simplified id_simps]) |
|
206 apply (tactic {* clean_tac @{context} 1 *}) |
201 done |
207 done |
202 |
208 |
203 lemma a1: "(a\<Colon>name) = (b\<Colon>name) \<Longrightarrow> Var a = Var b" |
209 lemma a1: "(a\<Colon>name) = (b\<Colon>name) \<Longrightarrow> Var a = Var b" |
204 apply (tactic {* lift_tac_lam @{context} @{thm a1} 1 *}) |
210 apply (tactic {* lift_tac_lam @{context} @{thm a1} 1 *}) |
205 done |
211 done |
208 apply (tactic {* lift_tac_lam @{context} @{thm a2} 1 *}) |
214 apply (tactic {* lift_tac_lam @{context} @{thm a2} 1 *}) |
209 done |
215 done |
210 |
216 |
211 lemma a3: "\<lbrakk>(x\<Colon>lam) = [(a\<Colon>name, b\<Colon>name)] \<bullet> (xa\<Colon>lam); a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> Lam a x = Lam b xa" |
217 lemma a3: "\<lbrakk>(x\<Colon>lam) = [(a\<Colon>name, b\<Colon>name)] \<bullet> (xa\<Colon>lam); a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> Lam a x = Lam b xa" |
212 apply (tactic {* lift_tac_lam @{context} @{thm a3} 1 *}) |
218 apply (tactic {* lift_tac_lam @{context} @{thm a3} 1 *}) |
|
219 apply (unfold fv_def[simplified id_simps]) |
|
220 apply (tactic {* clean_tac @{context} 1 *}) |
213 done |
221 done |
214 |
222 |
215 lemma alpha_cases: "\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P; |
223 lemma alpha_cases: "\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P; |
216 \<And>x xa xb xc. \<lbrakk>a1 = App x xb; a2 = App xa xc; x = xa; xb = xc\<rbrakk> \<Longrightarrow> P; |
224 \<And>x xa xb xc. \<lbrakk>a1 = App x xb; a2 = App xa xc; x = xa; xb = xc\<rbrakk> \<Longrightarrow> P; |
217 \<And>x a b xa. \<lbrakk>a1 = Lam a x; a2 = Lam b xa; x = [(a, b)] \<bullet> xa; a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> P\<rbrakk> |
225 \<And>x a b xa. \<lbrakk>a1 = Lam a x; a2 = Lam b xa; x = [(a, b)] \<bullet> xa; a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> P\<rbrakk> |
218 \<Longrightarrow> P" |
226 \<Longrightarrow> P" |
219 apply (tactic {* lift_tac_lam @{context} @{thm alpha.cases} 1 *}) |
227 apply (tactic {* lift_tac_lam @{context} @{thm alpha.cases} 1 *}) |
|
228 apply (unfold fv_def[simplified id_simps]) |
|
229 apply (tactic {* clean_tac @{context} 1 *}) |
220 done |
230 done |
221 |
231 |
222 lemma alpha_induct: "\<lbrakk>(qx\<Colon>lam) = (qxa\<Colon>lam); \<And>(a\<Colon>name) b\<Colon>name. a = b \<Longrightarrow> (qxb\<Colon>lam \<Rightarrow> lam \<Rightarrow> bool) (Var a) (Var b); |
232 lemma alpha_induct: "\<lbrakk>(qx\<Colon>lam) = (qxa\<Colon>lam); \<And>(a\<Colon>name) b\<Colon>name. a = b \<Longrightarrow> (qxb\<Colon>lam \<Rightarrow> lam \<Rightarrow> bool) (Var a) (Var b); |
223 \<And>(x\<Colon>lam) (xa\<Colon>lam) (xb\<Colon>lam) xc\<Colon>lam. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc); |
233 \<And>(x\<Colon>lam) (xa\<Colon>lam) (xb\<Colon>lam) xc\<Colon>lam. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc); |
224 \<And>(x\<Colon>lam) (a\<Colon>name) (b\<Colon>name) xa\<Colon>lam. |
234 \<And>(x\<Colon>lam) (a\<Colon>name) (b\<Colon>name) xa\<Colon>lam. |
225 \<lbrakk>x = [(a, b)] \<bullet> xa; qxb x ([(a, b)] \<bullet> xa); a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> qxb (Lam a x) (Lam b xa)\<rbrakk> |
235 \<lbrakk>x = [(a, b)] \<bullet> xa; qxb x ([(a, b)] \<bullet> xa); a \<notin> fv (Lam b x)\<rbrakk> \<Longrightarrow> qxb (Lam a x) (Lam b xa)\<rbrakk> |
226 \<Longrightarrow> qxb qx qxa" |
236 \<Longrightarrow> qxb qx qxa" |
227 apply (tactic {* lift_tac_lam @{context} @{thm alpha.induct} 1 *}) |
237 apply (tactic {* lift_tac_lam @{context} @{thm alpha.induct} 1 *}) |
|
238 apply (unfold fv_def[simplified id_simps]) |
|
239 apply (tactic {* clean_tac @{context} 1 *}) |
228 done |
240 done |
229 |
241 |
230 lemma var_inject: "(Var a = Var b) = (a = b)" |
242 lemma var_inject: "(Var a = Var b) = (a = b)" |
231 apply (tactic {* lift_tac_lam @{context} @{thm rvar_inject} 1 *}) |
243 apply (tactic {* lift_tac_lam @{context} @{thm rvar_inject} 1 *}) |
232 done |
244 done |