Added the CPS translation experiments. CPS1 comes with all the proofs, CPS2,3 just have the function and need eqvt_rhs to finish the obligations.
authorCezary Kaliszyk <kaliszyk@in.tum.de>
Thu, 16 Jun 2011 20:56:30 +0900
changeset 2861 5635a968fd3f
parent 2860 25a7f421a3ba
child 2863 74e5de79479d
Added the CPS translation experiments. CPS1 comes with all the proofs, CPS2,3 just have the function and need eqvt_rhs to finish the obligations.
Nominal/CPS/CPS1_Plotkin.thy
Nominal/CPS/CPS2_DanvyNielsen.thy
Nominal/CPS/CPS3_DanvyFilinski.thy
Nominal/CPS/Lt.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/CPS/CPS1_Plotkin.thy	Thu Jun 16 20:56:30 2011 +0900
@@ -0,0 +1,366 @@
+header {* CPS conversion *}
+theory Plotkin
+imports Lt
+begin
+
+nominal_primrec
+  CPS :: "lt \<Rightarrow> lt" ("_*" [250] 250)
+where
+  "atom k \<sharp> x \<Longrightarrow> (x~)* = (Abs k ((k~) $ (x~)))"
+| "atom k \<sharp> (x, M) \<Longrightarrow> (Abs x M)* = Abs k (k~ $ Abs x (M*))"
+| "atom k \<sharp> (M, N) \<Longrightarrow> atom m \<sharp> (N, k) \<Longrightarrow> atom n \<sharp> (k, m) \<Longrightarrow>
+    (M $ N)* = Abs k (M* $ Abs m (N* $ Abs n (m~ $ n~ $ k~)))"
+unfolding eqvt_def CPS_graph_def
+apply (rule, perm_simp, rule, rule)
+apply (simp_all add: fresh_Pair_elim)
+apply (rule_tac y="x" in lt.exhaust)
+apply (auto)
+apply (rule_tac x="name" and ?'a="name" in obtain_fresh)
+apply (simp_all add: fresh_at_base)[3]
+apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
+apply (simp add: fresh_Pair_elim fresh_at_base)[2]
+apply (rule_tac x="(lt1, lt2)" and ?'a="name" in obtain_fresh)
+apply (rule_tac x="(lt2, a)" and ?'a="name" in obtain_fresh)
+apply (rule_tac x="(a, aa)" and ?'a="name" in obtain_fresh)
+apply (simp add: fresh_Pair_elim fresh_at_base)
+apply (simp add: Abs1_eq_iff lt.fresh fresh_at_base)
+--"-"
+apply(rule_tac s="[[atom ka]]lst. ka~ $ Abs x (CPS_sumC M)" in trans)
+apply (case_tac "k = ka")
+apply simp
+apply(simp (no_asm) add: Abs1_eq_iff del:eqvts)
+apply (simp del: eqvts add: lt.fresh fresh_at_base)
+apply (simp only: lt.perm_simps(1) lt.perm_simps(3) flip_def[symmetric] lt.eq_iff(3))
+apply (subst  flip_at_base_simps(2))
+apply simp
+apply (intro conjI refl)
+apply (rule flip_fresh_fresh[symmetric])
+apply (simp_all add: lt.fresh)
+apply (metis fresh_eqvt_at lt.fsupp)
+apply (case_tac "ka = x")
+apply simp_all[2]
+apply (metis Abs_fresh_iff(3) atom_eq_iff finite_set fresh_Cons fresh_Nil fresh_atom fresh_eqvt_at fresh_finite_atom_set fresh_set lt.fsupp)
+apply (metis Abs_fresh_iff(3) atom_eq_iff finite_set fresh_Cons fresh_Nil fresh_atom fresh_eqvt_at fresh_finite_atom_set fresh_set lt.fsupp)
+--"-"
+apply (simp add: Abs1_eq(3))
+apply (erule Abs_lst1_fcb)
+apply (simp add: fresh_def supp_Abs)
+apply (drule_tac a="atom xa" in fresh_eqvt_at)
+apply (simp add: finite_supp)
+apply assumption
+apply (simp add: fresh_def supp_Abs)
+apply (simp add: eqvts eqvt_at_def)
+apply simp
+--"-"
+apply (rename_tac k' M N m' n')
+apply (subgoal_tac "atom k \<sharp> CPS_sumC M \<and> atom k' \<sharp> CPS_sumC M \<and> atom k \<sharp> CPS_sumC N \<and> atom k' \<sharp> CPS_sumC N \<and>
+                    atom m \<sharp> CPS_sumC N \<and> atom m' \<sharp> CPS_sumC N")
+prefer 2
+apply (intro conjI)
+apply (erule fresh_eqvt_at, simp add: finite_supp, assumption)+
+apply clarify
+apply (case_tac "k = k'", case_tac [!] "m' = k",case_tac [!]"m = k'",case_tac[!] "m = m'")
+apply (simp_all add: Abs1_eq_iff lt.fresh flip_def[symmetric] fresh_at_base flip_fresh_fresh permute_eq_iff)
+by (metis flip_at_base_simps(3) flip_at_simps(2) flip_commute permute_flip_at)+
+
+termination
+  by (relation "measure size") (simp_all add: lt.size)
+
+lemmas [simp] = fresh_Pair_elim CPS.simps(2,3)[simplified fresh_Pair_elim]
+
+lemma [simp]: "supp (M*) = supp M"
+  by (induct rule: CPS.induct, simp_all add: lt.supp supp_at_base fresh_at_base fresh_def supp_Pair)
+     (simp_all only: atom_eq_iff[symmetric], blast+)
+
+lemma [simp]: "x \<sharp> M* = x \<sharp> M"
+  unfolding fresh_def by simp
+
+(* Will be provided automatically by nominal_primrec *)
+lemma CPS_eqvt[eqvt]:
+  shows "p \<bullet> M* = (p \<bullet> M)*"
+  apply (induct M rule: lt.induct)
+  apply (rule_tac x="(name, p \<bullet> name, p)" and ?'a="name" in obtain_fresh)
+  apply simp
+  apply (simp add: Abs1_eq_iff lt.fresh flip_def[symmetric])
+  apply (metis atom_eqvt flip_fresh_fresh fresh_perm atom_eq_iff fresh_at_base)
+  apply (rule_tac x="(name, lt, p \<bullet> name, p \<bullet> lt, p)" and ?'a="name" in obtain_fresh)
+  apply simp
+  apply (metis atom_eqvt fresh_perm atom_eq_iff)
+  apply (rule_tac x="(lt1, p \<bullet> lt1, lt2, p \<bullet> lt2, p)" and ?'a="name" in obtain_fresh)
+  apply (rule_tac x="(a, lt2, p \<bullet> lt2, p)" and ?'a="name" in obtain_fresh)
+  apply (rule_tac x="(a, aa, p)" and ?'a="name" in obtain_fresh)
+  apply (simp)
+  apply (simp add: Abs1_eq_iff lt.fresh flip_def[symmetric])
+  apply (metis atom_eqvt fresh_perm atom_eq_iff)
+  done
+
+nominal_primrec
+  convert:: "lt => lt" ("_+" [250] 250)
+where
+  "(Var x)+ = Var x"
+| "(Abs x M)+ = Abs x (M*)"
+| "(M $ N)+ = M $ N"
+  unfolding convert_graph_def eqvt_def
+  apply (rule, perm_simp, rule, rule)
+  apply (erule lt.exhaust)
+  apply (simp_all)
+  apply blast
+  apply (simp add: Abs1_eq_iff CPS_eqvt)
+  by blast
+
+termination
+  by (relation "measure size") (simp_all add: lt.size)
+
+lemma convert_supp[simp]:
+  shows "supp (M+) = supp M"
+  by (induct M rule: lt.induct, simp_all add: lt.supp)
+
+lemma convert_fresh[simp]:
+  shows "x \<sharp> (M+) = x \<sharp> M"
+  unfolding fresh_def by simp
+
+lemma convert_eqvt[eqvt]:
+  shows "p \<bullet> (M+) = (p \<bullet> M)+"
+  by (nominal_induct M rule: lt.strong_induct, auto simp add: CPS_eqvt)
+
+lemma [simp]:
+  shows "isValue (p \<bullet> (M::lt)) = isValue M"
+  by (nominal_induct M rule: lt.strong_induct) auto
+
+lemma [eqvt]:
+  shows "p \<bullet> isValue M = isValue (p \<bullet> M)"
+  by (induct M rule: lt.induct) (perm_simp, rule refl)+
+
+nominal_primrec
+  Kapply :: "lt \<Rightarrow> lt \<Rightarrow> lt"       (infixl ";" 100)
+where
+  "Kapply (Abs x M) K = K $ (Abs x M)+"
+| "Kapply (Var x) K = K $ Var x"
+| "isValue M \<Longrightarrow> isValue N \<Longrightarrow> Kapply (M $ N) K = M+ $ N+ $ K"
+| "isValue M \<Longrightarrow> \<not>isValue N \<Longrightarrow> atom n \<sharp> M \<Longrightarrow> atom n \<sharp> K \<Longrightarrow>
+    Kapply (M $ N) K = N; (Abs n (M+ $ Var n $ K))"
+| "\<not>isValue M \<Longrightarrow> atom m \<sharp> N \<Longrightarrow> atom m \<sharp> K \<Longrightarrow> atom n \<sharp> m \<Longrightarrow> atom n \<sharp> K \<Longrightarrow>
+    Kapply (M $ N) K = M; (Abs m (N*  $ (Abs n (Var m $ Var n $ K))))"
+  unfolding Kapply_graph_def eqvt_def
+  apply (rule, perm_simp, rule, rule)
+apply (simp_all)
+apply (case_tac x)
+apply (rule_tac y="a" in lt.exhaust)
+apply (auto)
+apply (case_tac "isValue lt1")
+apply (case_tac "isValue lt2")
+apply (auto)[1]
+apply (rule_tac x="(lt1, ba)" and ?'a="name" in obtain_fresh)
+apply (simp add: fresh_Pair_elim fresh_at_base)
+apply (rule_tac x="(lt2, ba)" and ?'a="name" in obtain_fresh)
+apply (rule_tac x="(a, ba)" and ?'a="name" in obtain_fresh)
+apply (simp add: fresh_Pair_elim fresh_at_base)
+apply (auto simp add: Abs1_eq_iff eqvts)[1]
+apply (rename_tac M N u K)
+apply (subgoal_tac "Abs n (M+ $ n~ $ K) =  Abs u (M+ $ u~ $ K)")
+apply (simp only:)
+apply (auto simp add: Abs1_eq_iff flip_def[symmetric] lt.fresh fresh_at_base flip_fresh_fresh[symmetric])[1]
+apply (subgoal_tac "Abs m (Na* $ Abs n (m~ $ n~ $ Ka)) = Abs ma (Na* $ Abs na (ma~ $ na~ $ Ka))")
+apply (simp only:)
+apply (simp add: Abs1_eq_iff flip_def[symmetric] lt.fresh fresh_at_base)
+apply (subgoal_tac "Ka = (n \<leftrightarrow> na) \<bullet> Ka")
+apply (subgoal_tac "Ka = (m \<leftrightarrow> ma) \<bullet> Ka")
+apply (subgoal_tac "Ka = (n \<leftrightarrow> (m \<leftrightarrow> ma) \<bullet> na) \<bullet> Ka")
+apply (case_tac "m = ma")
+apply simp_all
+apply rule
+apply (auto simp add: flip_fresh_fresh[symmetric])
+apply (metis flip_at_base_simps(3) flip_fresh_fresh permute_flip_at)+
+done
+
+termination
+  by (relation "measure (\<lambda>(t, _). size t)") (simp_all add: lt.size)
+
+section{* lemma related to Kapply *}
+
+lemma [simp]: "isValue V \<Longrightarrow> V; K = K $ (V+)"
+  by (nominal_induct V rule: lt.strong_induct) auto
+
+section{* lemma related to CPS conversion *}
+
+lemma value_CPS:
+  assumes "isValue V"
+  and "atom a \<sharp> V"
+  shows "V* = Abs a (a~ $ V+)"
+  using assms
+proof (nominal_induct V avoiding: a rule: lt.strong_induct, simp_all add: lt.fresh)
+  fix name :: name and lt aa
+  assume a: "atom name \<sharp> aa" "\<And>b. \<lbrakk>isValue lt; atom b \<sharp> lt\<rbrakk> \<Longrightarrow> lt* = Abs b (b~ $ lt+)"
+    "atom aa \<sharp> lt \<or> aa = name"
+  obtain ab :: name where b: "atom ab \<sharp> (name, lt, a)" using obtain_fresh by blast
+  show "Abs name lt* = Abs aa (aa~ $ Abs name (lt*))" using a b
+    by (simp add: Abs1_eq_iff fresh_at_base lt.fresh)
+qed
+
+section{* first lemma CPS subst *}
+
+lemma CPS_subst_fv:
+  assumes *:"isValue V"
+  shows "((M[V/x])* = (M*)[V+/x])"
+using * proof (nominal_induct M avoiding: V x rule: lt.strong_induct)
+  case (Var name)
+  assume *: "isValue V"
+  obtain a :: name where a: "atom a \<sharp> (x, name, V)" using obtain_fresh by blast
+  show "((name~)[V/x])* = (name~)*[V+/x]" using a
+    by (simp add: fresh_at_base * value_CPS)
+next
+  case (Abs name lt V x)
+  assume *: "atom name \<sharp> V" "atom name \<sharp> x" "\<And>b ba. isValue b \<Longrightarrow> (lt[b/ba])* = lt*[b+/ba]"
+    "isValue V"
+  obtain a :: name where a: "atom a \<sharp> (name, lt, lt[V/x], x, V)" using obtain_fresh by blast
+  show "(Abs name lt[V/x])* = Abs name lt*[V+/x]" using * a
+    by (simp add: fresh_at_base)
+next
+  case (App lt1 lt2 V x)
+  assume *: "\<And>b ba. isValue b \<Longrightarrow> (lt1[b/ba])* = lt1*[b+/ba]" "\<And>b ba. isValue b \<Longrightarrow> (lt2[b/ba])* = lt2*[b+/ba]"
+    "isValue V"
+  obtain a :: name where a: "atom a \<sharp> (lt1[V/x], lt1, lt2[V/x], lt2, V, x)" using obtain_fresh by blast
+  obtain b :: name where b: "atom b \<sharp> (lt2[V/x], lt2, a, V, x)" using obtain_fresh by blast
+  obtain c :: name where c: "atom c \<sharp> (a, b, V, x)" using obtain_fresh by blast
+  show "((lt1 $ lt2)[V/x])* = (lt1 $ lt2)*[V+/x]" using * a b c
+    by (simp add: fresh_at_base)
+qed
+
+lemma [simp]: "isValue V \<Longrightarrow> isValue (V+)"
+  by (nominal_induct V rule: lt.strong_induct, auto)
+
+lemma CPS_eval_Kapply:
+  assumes a: "isValue K"
+  shows "(M* $ K) \<longrightarrow>\<^isub>\<beta>\<^sup>* (M ; K)"
+  using a
+proof (nominal_induct M avoiding: K rule: lt.strong_induct, simp_all)
+  case (Var name K)
+  assume *: "isValue K"
+  obtain a :: name where a: "atom a \<sharp> (name, K)" using obtain_fresh by blast
+  show "(name~)* $ K \<longrightarrow>\<^isub>\<beta>\<^sup>* K $ name~" using * a
+    by simp (rule evbeta', simp_all add: fresh_at_base)
+next
+  fix name :: name and lt K
+  assume *: "atom name \<sharp> K" "\<And>b. isValue b \<Longrightarrow> lt* $ b \<longrightarrow>\<^isub>\<beta>\<^sup>* lt ; b" "isValue K"
+  obtain a :: name where a: "atom a \<sharp> (name, K, lt)" using obtain_fresh by blast
+  then have b: "atom name \<sharp> a" using fresh_PairD(1) fresh_at_base atom_eq_iff by metis
+  show "Abs name lt* $ K \<longrightarrow>\<^isub>\<beta>\<^sup>* K $ Abs name (lt*)" using * a b
+    by simp (rule evbeta', simp_all)
+next
+  fix lt1 lt2 K
+  assume *: "\<And>b. isValue b \<Longrightarrow>  lt1* $ b \<longrightarrow>\<^isub>\<beta>\<^sup>* lt1 ; b" "\<And>b. isValue b \<Longrightarrow>  lt2* $ b \<longrightarrow>\<^isub>\<beta>\<^sup>* lt2 ; b" "isValue K"
+  obtain a :: name where a: "atom a \<sharp> (lt1, lt2, K)" using obtain_fresh by blast
+  obtain b :: name where b: "atom b \<sharp> (lt1, lt2, K, a)" using obtain_fresh by blast
+  obtain c :: name where c: "atom c \<sharp> (lt1, lt2, K, a, b)" using obtain_fresh by blast
+  have d: "atom a \<sharp> lt1" "atom a \<sharp> lt2" "atom a \<sharp> K" "atom b \<sharp> lt1" "atom b \<sharp> lt2" "atom b \<sharp> K" "atom b \<sharp> a"
+    "atom c \<sharp> lt1" "atom c \<sharp> lt2" "atom c \<sharp> K" "atom c \<sharp> a" "atom c \<sharp> b" using fresh_Pair a b c by simp_all
+  have "(lt1 $ lt2)* $ K \<longrightarrow>\<^isub>\<beta>\<^sup>* lt1* $ Abs b (lt2* $ Abs c (b~ $ c~ $ K))" using * d
+    by (simp add: fresh_at_base) (rule evbeta', simp_all add: fresh_at_base)
+  also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* lt1 $ lt2 ; K" proof (cases "isValue lt1")
+    assume e: "isValue lt1"
+    have "lt1* $ Abs b (lt2* $ Abs c (b~ $ c~ $ K)) \<longrightarrow>\<^isub>\<beta>\<^sup>* Abs b (lt2* $ Abs c (b~ $ c~ $ K)) $ lt1+"
+      using * d e by simp
+    also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* lt2* $ Abs c (lt1+ $ c~ $ K)"
+      by (rule evbeta', simp_all add: * d e, metis d(12) fresh_at_base)
+    also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* lt1 $ lt2 ; K" proof (cases "isValue lt2")
+      assume f: "isValue lt2"
+      have "lt2* $ Abs c (lt1+ $ c~ $ K) \<longrightarrow>\<^isub>\<beta>\<^sup>* Abs c (lt1+ $ c~ $ K) $ lt2+" using * d e f by simp
+      also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* lt1+ $ lt2+ $ K"
+        by (rule evbeta', simp_all add: d e f)
+      finally show ?thesis using * d e f by simp
+    next
+      assume f: "\<not> isValue lt2"
+      have "lt2* $ Abs c (lt1+ $ c~ $ K) \<longrightarrow>\<^isub>\<beta>\<^sup>* lt2 ; Abs c (lt1+ $ c~ $ K)" using * d e f by simp
+      also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* lt2 ; Abs a (lt1+ $ a~ $ K)" using Kapply.simps(4) d e evs1 f by metis
+      finally show ?thesis using * d e f by simp
+    qed
+    finally show ?thesis .
+  qed (metis Kapply.simps(5) isValue.simps(2) * d)
+  finally show "(lt1 $ lt2)* $ K \<longrightarrow>\<^isub>\<beta>\<^sup>* lt1 $ lt2 ; K" .
+qed
+
+lemma Kapply_eval:
+  assumes a: "M \<longrightarrow>\<^isub>\<beta> N" "isValue K"
+  shows "(M; K) \<longrightarrow>\<^isub>\<beta>\<^sup>*  (N; K)"
+  using assms
+proof (induct arbitrary: K rule: eval.induct)
+  case (evbeta x V M)
+  fix K
+  assume a: "isValue K" "isValue V" "atom x \<sharp> V"
+  have "Abs x (M*) $ V+ $ K \<longrightarrow>\<^isub>\<beta>\<^sup>* ((M*)[V+/x] $ K)"
+    by (rule evs2,rule ev2,rule Lt.evbeta) (simp_all add: fresh_def a[simplified fresh_def] evs1)
+  also have "... = ((M[V/x])* $ K)" by (simp add: CPS_subst_fv a)
+  also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* (M[V/x] ; K)" by (rule CPS_eval_Kapply, simp_all add: a)
+  finally show "(Abs x M $ V ; K) \<longrightarrow>\<^isub>\<beta>\<^sup>*  (M[V/x] ; K)" using a by simp
+next
+  case (ev1 V M N)
+  fix V M N K
+  assume a: "isValue V" "M \<longrightarrow>\<^isub>\<beta> N" "\<And>K. isValue K \<Longrightarrow> M ; K \<longrightarrow>\<^isub>\<beta>\<^sup>* N ; K" "isValue K"
+  obtain a :: name where b: "atom a \<sharp> (V, K, M, N)" using obtain_fresh by blast
+  show "V $ M ; K \<longrightarrow>\<^isub>\<beta>\<^sup>* V $ N ; K" proof (cases "isValue N")
+    assume "\<not> isValue N"
+    then show "V $ M ; K \<longrightarrow>\<^isub>\<beta>\<^sup>* V $ N ; K" using a b by simp
+  next
+    assume n: "isValue N"
+    have c: "M; Abs a (V+ $ a~ $ K) \<longrightarrow>\<^isub>\<beta>\<^sup>* Abs a (V+ $ a~ $ K) $ N+" using a b by (simp add: n)
+    also have d: "... \<longrightarrow>\<^isub>\<beta>\<^sup>* V+ $ N+ $ K" by (rule evbeta') (simp_all add: a b n)
+    finally show "V $ M ; K \<longrightarrow>\<^isub>\<beta>\<^sup>* V $ N ; K" using a b by (simp add: n)
+  qed
+next
+  case (ev2 M M' N)
+  assume *: "M \<longrightarrow>\<^isub>\<beta> M'" "\<And>K. isValue K \<Longrightarrow>  M ; K \<longrightarrow>\<^isub>\<beta>\<^sup>* M' ; K" "isValue K"
+  obtain a :: name where a: "atom a \<sharp> (K, M, N, M')" using obtain_fresh by blast
+  obtain b :: name where b: "atom b \<sharp> (a, K, M, N, M', N+)" using obtain_fresh by blast
+  have d: "atom a \<sharp> K" "atom a \<sharp> M" "atom a \<sharp> N" "atom a \<sharp> M'" "atom b \<sharp> a" "atom b \<sharp> K"
+    "atom b \<sharp> M" "atom b \<sharp> N" "atom b \<sharp> M'" using a b fresh_Pair by simp_all
+  have "M $ N ; K  \<longrightarrow>\<^isub>\<beta>\<^sup>* M' ; Abs a (N* $ Abs b (a~ $ b~ $ K))" using * d by simp
+  also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* M' $ N ; K" proof (cases "isValue M'")
+    assume "\<not> isValue M'"
+    then show ?thesis using * d by (simp_all add: evs1)
+  next
+    assume e: "isValue M'"
+    then have "M' ; Abs a (N* $ Abs b (a~ $ b~ $ K)) = Abs a (N* $ Abs b (a~ $ b~ $ K)) $ M'+" by simp
+    also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* (N* $ Abs b (a~ $ b~ $ K))[M'+/a]"
+      by (rule evbeta') (simp_all add: fresh_at_base e d)
+    also have "... = N* $ Abs b (M'+ $ b~ $ K)" using * d by (simp add: fresh_at_base)
+    also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* M' $ N ; K" proof (cases "isValue N")
+      assume f: "isValue N"
+      have "N* $ Abs b (M'+ $ b~ $ K) \<longrightarrow>\<^isub>\<beta>\<^sup>* Abs b (M'+ $ b~ $ K) $ N+"
+        by (rule eval_trans, rule CPS_eval_Kapply) (simp_all add: d e f * evs1)
+      also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* M' $ N ; K" by (rule evbeta') (simp_all add: d e f evs1)
+      finally show ?thesis .
+    next
+      assume "\<not> isValue N"
+      then show ?thesis using d e
+        by (metis CPS_eval_Kapply Kapply.simps(4) isValue.simps(2))
+    qed
+    finally show ?thesis .
+  qed
+  finally show ?case .
+qed
+
+lemma Kapply_eval_rtrancl:
+  assumes H: "M \<longrightarrow>\<^isub>\<beta>\<^sup>*  N" and "isValue K"
+  shows "(M;K) \<longrightarrow>\<^isub>\<beta>\<^sup>* (N;K)"
+  using H
+  by (induct) (metis Kapply_eval assms(2) eval_trans evs1)+
+
+lemma
+  assumes "isValue V" "M \<longrightarrow>\<^isub>\<beta>\<^sup>* V"
+  shows "M* $ (Abs x (x~)) \<longrightarrow>\<^isub>\<beta>\<^sup>* V+"
+proof-
+  obtain y::name where *: "atom y \<sharp> V" using obtain_fresh by blast
+  have e: "Abs x (x~) = Abs y (y~)"
+    by (simp add: Abs1_eq_iff lt.fresh fresh_at_base)
+  have "M* $ Abs x (x~) \<longrightarrow>\<^isub>\<beta>\<^sup>* M ; Abs x (x~)"
+    by(rule CPS_eval_Kapply,simp_all add: assms)
+  also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* (V ; Abs x (x~))" by (rule Kapply_eval_rtrancl, simp_all add: assms)
+  also have "... = V ; Abs y (y~)" using e by (simp only:)
+  also have "... \<longrightarrow>\<^isub>\<beta>\<^sup>* (V+)" by (simp add: assms, rule evbeta') (simp_all add: assms *)
+  finally show "M* $ (Abs x (x~)) \<longrightarrow>\<^isub>\<beta>\<^sup>* (V+)" .
+qed
+
+end
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/CPS/CPS2_DanvyNielsen.thy	Thu Jun 16 20:56:30 2011 +0900
@@ -0,0 +1,83 @@
+header {* CPS transformation of Danvy and Nielsen *}
+theory DanvyNielsen
+imports Lt
+begin
+
+nominal_datatype cpsctxt =
+  Hole
+| CFun cpsctxt lt
+| CArg lt cpsctxt
+| CAbs x::name c::cpsctxt bind x in c
+
+nominal_primrec
+  fill   :: "cpsctxt \<Rightarrow> lt \<Rightarrow> lt"         ("_<_>" [200, 200] 100)
+where
+  fill_hole : "Hole<M> = M"
+| fill_fun  : "(CFun C N)<M> = (C<M>) $ N"
+| fill_arg  : "(CArg N C)<M> = N $ (C<M>)"
+| fill_abs  : "atom x \<sharp> M \<Longrightarrow> (CAbs x C)<M> = Abs x (C<M>)"
+  unfolding eqvt_def fill_graph_def
+  apply perm_simp
+  apply auto
+  apply (rule_tac y="a" and c="b" in cpsctxt.strong_exhaust)
+  apply (auto simp add: fresh_star_def)
+  apply (erule Abs_lst1_fcb)
+  apply (simp_all add: Abs_fresh_iff)
+  apply (erule fresh_eqvt_at)
+  apply (simp add: finite_supp)
+  apply (simp add: fresh_Pair)
+  apply (simp add: eqvt_at_def swap_fresh_fresh)
+  done
+
+termination
+  by (relation "measure (\<lambda>(x, _). size x)") (auto simp add: cpsctxt.size)
+
+lemma [eqvt]: "p \<bullet> fill c t = fill (p \<bullet> c) (p \<bullet> t)"
+  by (nominal_induct c avoiding: t rule: cpsctxt.strong_induct) simp_all
+
+nominal_primrec
+  ccomp :: "cpsctxt => cpsctxt => cpsctxt"
+where
+  "ccomp Hole C  = C"
+| "atom x \<sharp> C' \<Longrightarrow> ccomp (CAbs x C) C' = CAbs x (ccomp C C')"
+| "ccomp (CArg N C) C' = CArg N (ccomp C C')"
+| "ccomp (CFun C N) C'  = CFun (ccomp C C') N"
+  unfolding eqvt_def ccomp_graph_def
+  apply perm_simp
+  apply auto
+  apply (rule_tac y="a" and c="b" in cpsctxt.strong_exhaust)
+  apply (auto simp add: fresh_star_def)
+  apply blast+
+  apply (erule Abs_lst1_fcb)
+  apply (simp_all add: Abs_fresh_iff)
+  apply (erule fresh_eqvt_at)
+  apply (simp add: finite_supp)
+  apply (simp add: fresh_Pair)
+  apply (simp add: eqvt_at_def swap_fresh_fresh)
+  done
+
+termination
+  by (relation "measure (\<lambda>(x, _). size x)") (auto simp add: cpsctxt.size)
+
+lemma [eqvt]: "p \<bullet> ccomp c c' = ccomp (p \<bullet> c) (p \<bullet> c')"
+  by (nominal_induct c avoiding: c' rule: cpsctxt.strong_induct) simp_all
+
+nominal_primrec
+    CPSv :: "lt => lt"
+and CPS :: "lt => cpsctxt" where
+  "CPSv (Var x) = x~"
+| "CPS (Var x) = CFun Hole (x~)"
+| "atom b \<sharp> M \<Longrightarrow> CPSv (Abs y M) = Abs y (Abs b ((CPS M)<Var b>))"
+| "atom b \<sharp> M \<Longrightarrow> CPS (Abs y M) = CFun Hole (Abs y (Abs b ((CPS M)<Var b>)))"
+| "CPSv (M $ N) = Abs x (Var x)"
+| "isValue M \<Longrightarrow> isValue N \<Longrightarrow> CPS (M $ N) = CArg (CPSv M $ CPSv N) Hole"
+| "isValue M \<Longrightarrow> ~isValue N \<Longrightarrow> atom a \<sharp> N \<Longrightarrow> CPS (M $ N) =
+     ccomp (CPS N) (CAbs a (CArg (CPSv M $ Var a) Hole))"
+| "~isValue M \<Longrightarrow> isValue N \<Longrightarrow> atom a \<sharp> N \<Longrightarrow> CPS (M $ N) =
+     ccomp (CPS M) (CAbs a (CArg (Var a $ (CPSv N)) Hole))"
+| "~isValue M \<Longrightarrow> ~isValue N \<Longrightarrow> atom a \<sharp> (N, b) \<Longrightarrow> CPS (M $ N) =
+     ccomp (CPS M) (CAbs a (ccomp (CPS N) (CAbs b (CArg (Var a $ Var b) Hole))))"
+  apply auto
+  oops --"The goals seem reasonable"
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/CPS/CPS3_DanvyFilinski.thy	Thu Jun 16 20:56:30 2011 +0900
@@ -0,0 +1,245 @@
+header {* CPS transformation of Danvy and Filinski *}
+theory DanvyFilinski imports Lt begin
+
+nominal_primrec
+  CPS1 :: "lt \<Rightarrow> (lt \<Rightarrow> lt) \<Rightarrow> lt" ("_*_"  [100,100] 100)
+and
+  CPS2 :: "lt \<Rightarrow> lt \<Rightarrow> lt" ("_^_" [100,100] 100)
+where
+  "eqvt k \<Longrightarrow> (x~)*k = k (x~)"
+| "eqvt k \<Longrightarrow> (M$N)*k = M*(%m. (N*(%n.((m $ n) $ (Abs c (k (c~)))))))"
+| "eqvt k \<Longrightarrow> atom c \<sharp> (x, M) \<Longrightarrow> (Abs x M)*k = k (Abs x (Abs c (M^(c~))))"
+| "\<not>eqvt k \<Longrightarrow> (CPS1 t k) = t"
+| "(x~)^l = l $ (x~)"
+| "(M$N)^l = M*(%m. (N*(%n.((m $ n) $ l))))"
+| "atom c \<sharp> (x, M) \<Longrightarrow> (Abs x M)^l = l $ (Abs x (Abs c (M^(c~))))"
+  apply (simp only: eqvt_def CPS1_CPS2_graph_def)
+  apply (rule, perm_simp, rule)
+  apply auto
+  apply (case_tac x)
+  apply (case_tac a)
+  apply (case_tac "eqvt b")
+  apply (rule_tac y="aa" in lt.strong_exhaust)
+  apply auto[4]
+  apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
+  apply (simp add: fresh_at_base Abs1_eq_iff)
+  apply (case_tac b)
+  apply (rule_tac y="a" in lt.strong_exhaust)
+  apply auto[3]
+  apply blast
+  apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) 
+  apply (simp add: fresh_at_base Abs1_eq_iff)
+  apply blast
+--"-"
+  apply (subgoal_tac "Abs c (ka (c~)) = Abs ca (ka (ca~))")
+  apply (simp only:)
+  apply (simp add: Abs1_eq_iff)
+  apply (case_tac "c=ca")
+  apply simp_all[2]
+  apply rule
+  apply (perm_simp)
+  apply (simp add: eqvt_def)
+  apply (simp add: fresh_def)
+  apply (rule contra_subsetD[OF supp_fun_app])
+  back
+  apply (simp add: supp_fun_eqvt lt.supp supp_at_base)
+--"-"
+  apply (rule arg_cong)
+  back
+  apply simp
+  apply (thin_tac "eqvt ka")
+  apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh)
+  apply (subgoal_tac "eqvt_at CPS1_CPS2_sumC (Inr (Ma, ca~))")
+  apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))")
+  prefer 2
+  apply (simp add: Abs1_eq_iff')
+  apply (case_tac "c = a")
+  apply simp_all[2]
+  apply rule
+  apply (simp add: eqvt_at_def)
+  apply (simp add: swap_fresh_fresh fresh_Pair_elim)
+  apply (erule fresh_eqvt_at)
+  apply (simp add: supp_Inr finite_supp)
+  apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
+  apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))")
+  prefer 2
+  apply (simp add: Abs1_eq_iff')
+  apply (case_tac "ca = a")
+  apply simp_all[2]
+  apply rule
+  apply (simp add: eqvt_at_def)
+  apply (simp add: swap_fresh_fresh fresh_Pair_elim)
+  apply (erule fresh_eqvt_at)
+  apply (simp add: supp_Inr finite_supp)
+  apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
+  apply (simp only: )
+  apply (erule Abs_lst1_fcb)
+  apply (simp add: Abs_fresh_iff)
+  apply (drule sym)
+  apply (simp only:)
+  apply (simp add: Abs_fresh_iff lt.fresh)
+  apply clarify
+  apply (erule fresh_eqvt_at)
+  apply (simp add: supp_Inr finite_supp)
+  apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
+  apply (drule sym)
+  apply (drule sym)
+  apply (drule sym)
+  apply (simp only:)
+  apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))")
+  apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))")
+  apply (thin_tac "atom a \<sharp> (c, ca, x, xa, M, Ma)")
+  apply (simp add: fresh_Pair_elim)
+  apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]])
+  back
+  back
+  back
+  apply assumption
+  apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh)
+  apply (case_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> c = ca")
+  apply simp_all[3]
+  apply rule
+  apply (case_tac "c = xa")
+  apply simp_all[2]
+  apply (simp add: eqvt_at_def)
+  apply clarify
+  apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh)
+  apply (simp add: eqvt_at_def)
+  apply clarify
+  apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh)
+  apply (case_tac "c = xa")
+  apply simp
+  apply (subgoal_tac "((ca \<leftrightarrow> x) \<bullet> (atom x)) \<sharp> (ca \<leftrightarrow> x) \<bullet> CPS1_CPS2_sumC (Inr (Ma, ca~))")
+  apply (simp add: atom_eqvt eqvt_at_def)
+  apply (simp add: flip_fresh_fresh)
+  apply (subst fresh_permute_iff)
+  apply (erule fresh_eqvt_at)
+  apply (simp add: supp_Inr finite_supp)
+  apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair)
+  apply simp
+  apply clarify
+  apply (subgoal_tac "atom ca \<sharp> (atom x \<rightleftharpoons> atom xa) \<bullet> CPS1_CPS2_sumC (Inr (M, c~))")
+  apply (simp add: eqvt_at_def)
+  apply (subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> atom ca \<sharp> CPS1_CPS2_sumC (Inr (M, c~))")
+  apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
+  apply (erule fresh_eqvt_at)
+  apply (simp add: finite_supp supp_Inr)
+  apply (simp add: fresh_Inr fresh_Pair lt.fresh)
+  apply rule
+  apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
+  apply (simp add: fresh_def supp_at_base)
+  apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3))
+--"-"
+  prefer 2
+  apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh)
+  apply (subgoal_tac "eqvt_at CPS1_CPS2_sumC (Inr (Ma, ca~))")
+  apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))")
+  prefer 2
+  apply (simp add: Abs1_eq_iff')
+  apply (case_tac "c = a")
+  apply simp_all[2]
+  apply rule
+  apply (simp add: eqvt_at_def)
+  apply (simp add: swap_fresh_fresh fresh_Pair_elim)
+  apply (erule fresh_eqvt_at)
+  apply (simp add: supp_Inr finite_supp)
+  apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
+  apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))")
+  prefer 2
+  apply (simp add: Abs1_eq_iff')
+  apply (case_tac "ca = a")
+  apply simp_all[2]
+  apply rule
+  apply (simp add: eqvt_at_def)
+  apply (simp add: swap_fresh_fresh fresh_Pair_elim)
+  apply (erule fresh_eqvt_at)
+  apply (simp add: supp_Inr finite_supp)
+  apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
+  apply (simp only: )
+  apply (erule Abs_lst1_fcb)
+  apply (simp add: Abs_fresh_iff)
+  apply (drule sym)
+  apply (simp only:)
+  apply (simp add: Abs_fresh_iff lt.fresh)
+  apply clarify
+  apply (erule fresh_eqvt_at)
+  apply (simp add: supp_Inr finite_supp)
+  apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
+  apply (drule sym)
+  apply (drule sym)
+  apply (drule sym)
+  apply (simp only:)
+  apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))")
+  apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))")
+  apply (thin_tac "atom a \<sharp> (c, ca, x, xa, M, Ma)")
+  apply (simp add: fresh_Pair_elim)
+  apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]])
+  back
+  back
+  back
+  apply assumption
+  apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh)
+  apply (case_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> c = ca")
+  apply simp_all[3]
+  apply rule
+  apply (case_tac "c = xa")
+  apply simp_all[2]
+  apply (simp add: eqvt_at_def)
+  apply clarify
+  apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh)
+  apply (simp add: eqvt_at_def)
+  apply clarify
+  apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh)
+  apply (case_tac "c = xa")
+  apply simp
+  apply (subgoal_tac "((ca \<leftrightarrow> x) \<bullet> (atom x)) \<sharp> (ca \<leftrightarrow> x) \<bullet> CPS1_CPS2_sumC (Inr (Ma, ca~))")
+  apply (simp add: atom_eqvt eqvt_at_def)
+  apply (simp add: flip_fresh_fresh)
+  apply (subst fresh_permute_iff)
+  apply (erule fresh_eqvt_at)
+  apply (simp add: supp_Inr finite_supp)
+  apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair)
+  apply simp
+  apply clarify
+  apply (subgoal_tac "atom ca \<sharp> (atom x \<rightleftharpoons> atom xa) \<bullet> CPS1_CPS2_sumC (Inr (M, c~))")
+  apply (simp add: eqvt_at_def)
+  apply (subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> atom ca \<sharp> CPS1_CPS2_sumC (Inr (M, c~))")
+  apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
+  apply (erule fresh_eqvt_at)
+  apply (simp add: finite_supp supp_Inr)
+  apply (simp add: fresh_Inr fresh_Pair lt.fresh)
+  apply rule
+  apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
+  apply (simp add: fresh_def supp_at_base)
+  apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3))
+--"Only left subgoals are eqvt for the other side"
+  oops
+
+(*termination
+  sorry
+
+definition psi:: "lt => lt"
+  where "psi V == V*(\<lambda>x. x)"
+
+section {* Simple consequence of CPS *}
+
+lemma value_eq1 : "isValue V \<Longrightarrow> eqvt k \<Longrightarrow> V*k = k (psi V)"
+  apply (cases V rule: lt.exhaust)
+  apply (auto simp add: psi_def)
+  apply (subst CPS1.simps)
+  apply (simp add: eqvt_def eqvt_bound eqvt_lambda)
+  apply rule
+  apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
+  apply (subst CPS1.simps(3))
+  apply assumption+
+  apply (subst CPS1.simps(3))
+  apply (simp add: eqvt_def eqvt_bound eqvt_lambda)
+  apply assumption
+  apply rule
+  done
+*)
+
+end
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/CPS/Lt.thy	Thu Jun 16 20:56:30 2011 +0900
@@ -0,0 +1,131 @@
+header {* The Call-by-Value Lambda Calculus *}
+theory Lt
+imports Nominal2
+begin
+
+atom_decl name
+
+nominal_datatype lt =
+    Var name       ("_~"  [150] 149)
+  | Abs x::"name" t::"lt"  bind  x in t
+  | App lt lt         (infixl "$" 100)
+
+nominal_primrec
+  subst :: "lt \<Rightarrow> lt \<Rightarrow> name \<Rightarrow> lt" ("_[_'/_]" [200,0,0] 190)
+where
+  "(y~)[L/x] = (if y = x then L else y~)"
+| "atom y\<sharp>L \<Longrightarrow> atom y\<sharp>x \<Longrightarrow> (Abs y M)[L/x]  = Abs y (M[L/x])"
+| "(M $ N)[L/x] = M[L/x] $ N[L/x]"
+  unfolding eqvt_def subst_graph_def
+  apply(perm_simp)
+  apply(auto)
+  apply(rule_tac y="a" and c="(aa, b)" in lt.strong_exhaust)
+  apply(simp_all add: fresh_star_def fresh_Pair)
+  apply blast+
+  apply (erule Abs_lst1_fcb)
+  apply (simp_all add: Abs_fresh_iff)[2]
+  apply(drule_tac a="atom (ya)" in fresh_eqvt_at)
+  apply(simp add: finite_supp fresh_Pair)
+  apply(simp_all add: fresh_Pair Abs_fresh_iff)
+  apply(subgoal_tac "(atom y \<rightleftharpoons> atom ya) \<bullet> La = La")
+  apply(subgoal_tac "(atom y \<rightleftharpoons> atom ya) \<bullet> xa = xa")
+  apply(simp add: atom_eqvt eqvt_at_def Abs1_eq_iff swap_commute)
+  apply (simp_all add: swap_fresh_fresh)
+  done
+
+termination
+  by (relation "measure (\<lambda>(t, _, _). size t)")
+     (simp_all add: lt.size)
+
+lemma subst_eqvt[eqvt]:
+  shows "p\<bullet>(M[V/(x::name)]) = (p\<bullet>M)[(p\<bullet>V)/(p\<bullet>x)]"
+  by (induct M V x rule: subst.induct) (simp_all)
+
+lemma forget[simp]:
+  shows "atom x \<sharp> M \<Longrightarrow> M[s/x] = M"
+  by (nominal_induct M avoiding: x s rule: lt.strong_induct)
+     (auto simp add: lt.fresh fresh_at_base)
+
+lemma [simp]: "supp ( M[V/(x::name)] ) <= (supp(M) - {atom x}) Un (supp V)"
+  by (nominal_induct M avoiding: x V rule: lt.strong_induct)
+     (auto simp add: lt.supp supp_at_base, blast, blast)
+
+nominal_primrec 
+  isValue:: "lt => bool"
+where
+  "isValue (Var x) = True"
+| "isValue (Abs y N) = True"
+| "isValue (A $ B) = False"
+  unfolding eqvt_def isValue_graph_def
+  by (perm_simp, auto)
+     (erule lt.exhaust, auto)
+
+termination
+  by (relation "measure size")
+     (simp_all add: lt.size)
+
+lemma is_Value_eqvt[eqvt]:
+  shows "p\<bullet>(isValue (M::lt)) = isValue (p\<bullet>M)"
+  by (induct M rule: lt.induct) (simp_all add: eqvts)
+
+inductive
+  eval :: "[lt, lt] \<Rightarrow> bool" (" _ \<longrightarrow>\<^isub>\<beta> _" [80,80] 80)
+  where
+   evbeta: "\<lbrakk>atom x\<sharp>V; isValue V\<rbrakk> \<Longrightarrow> ((Abs x M) $ V) \<longrightarrow>\<^isub>\<beta> (M[V/x])"
+|  ev1: "\<lbrakk>isValue V; M \<longrightarrow>\<^isub>\<beta> M' \<rbrakk> \<Longrightarrow> (V $ M) \<longrightarrow>\<^isub>\<beta> (V $ M')"
+|  ev2: "M \<longrightarrow>\<^isub>\<beta> M' \<Longrightarrow> (M $ N) \<longrightarrow>\<^isub>\<beta> (M' $ N)"
+
+equivariance eval
+
+nominal_inductive eval
+done
+
+(*lemmas [simp] = lt.supp(2)*)
+
+lemma closedev1: assumes "s \<longrightarrow>\<^isub>\<beta> t"
+  shows "supp t <= supp s"
+  using assms
+    by (induct, auto simp add: lt.supp)
+
+
+lemma [simp]: "~ ((Abs x M) \<longrightarrow>\<^isub>\<beta> N)"
+by (rule, erule eval.cases, simp_all)
+
+lemma [simp]: assumes "M \<longrightarrow>\<^isub>\<beta> N" shows "~ isValue M"
+using assms
+by (cases, auto)
+
+
+inductive
+  eval_star :: "[lt, lt] \<Rightarrow> bool" (" _ \<longrightarrow>\<^isub>\<beta>\<^sup>* _" [80,80] 80)
+  where
+   evs1: "M \<longrightarrow>\<^isub>\<beta>\<^sup>* M"
+|  evs2: "\<lbrakk>M \<longrightarrow>\<^isub>\<beta> M'; M' \<longrightarrow>\<^isub>\<beta>\<^sup>*  M'' \<rbrakk> \<Longrightarrow> M \<longrightarrow>\<^isub>\<beta>\<^sup>*  M''"
+
+lemma eval_evs: assumes *: "M \<longrightarrow>\<^isub>\<beta> M'" shows "M \<longrightarrow>\<^isub>\<beta>\<^sup>* M'"
+by (rule evs2, rule *, rule evs1)
+
+lemma eval_trans[trans]:
+  assumes "M1  \<longrightarrow>\<^isub>\<beta>\<^sup>* M2"
+      and "M2  \<longrightarrow>\<^isub>\<beta>\<^sup>*  M3"
+  shows "M1  \<longrightarrow>\<^isub>\<beta>\<^sup>* M3"
+  using assms
+  by (induct, auto intro: evs2)
+
+lemma evs3[rule_format]: assumes "M1  \<longrightarrow>\<^isub>\<beta>\<^sup>* M2"
+  shows "M2  \<longrightarrow>\<^isub>\<beta> M3 \<longrightarrow> M1  \<longrightarrow>\<^isub>\<beta>\<^sup>* M3"
+  using assms
+    by (induct, auto intro: eval_evs evs2)
+
+equivariance eval_star
+
+lemma evbeta':
+  fixes x :: name
+  assumes "isValue V" and "atom x\<sharp>V" and "N = (M[V/x])"
+  shows "((Abs x M) $ V) \<longrightarrow>\<^isub>\<beta>\<^sup>* N"
+  using assms by simp (rule evs2, rule evbeta, simp_all add: evs1)
+
+end
+
+
+