Nominal/CPS/CPS2_DanvyNielsen.thy
author Cezary Kaliszyk <kaliszyk@in.tum.de>
Thu, 16 Jun 2011 20:56:30 +0900
changeset 2861 5635a968fd3f
permissions -rw-r--r--
Added the CPS translation experiments. CPS1 comes with all the proofs, CPS2,3 just have the function and need eqvt_rhs to finish the obligations.

header {* CPS transformation of Danvy and Nielsen *}
theory DanvyNielsen
imports Lt
begin

nominal_datatype cpsctxt =
  Hole
| CFun cpsctxt lt
| CArg lt cpsctxt
| CAbs x::name c::cpsctxt bind x in c

nominal_primrec
  fill   :: "cpsctxt \<Rightarrow> lt \<Rightarrow> lt"         ("_<_>" [200, 200] 100)
where
  fill_hole : "Hole<M> = M"
| fill_fun  : "(CFun C N)<M> = (C<M>) $ N"
| fill_arg  : "(CArg N C)<M> = N $ (C<M>)"
| fill_abs  : "atom x \<sharp> M \<Longrightarrow> (CAbs x C)<M> = Abs x (C<M>)"
  unfolding eqvt_def fill_graph_def
  apply perm_simp
  apply auto
  apply (rule_tac y="a" and c="b" in cpsctxt.strong_exhaust)
  apply (auto simp add: fresh_star_def)
  apply (erule Abs_lst1_fcb)
  apply (simp_all add: Abs_fresh_iff)
  apply (erule fresh_eqvt_at)
  apply (simp add: finite_supp)
  apply (simp add: fresh_Pair)
  apply (simp add: eqvt_at_def swap_fresh_fresh)
  done

termination
  by (relation "measure (\<lambda>(x, _). size x)") (auto simp add: cpsctxt.size)

lemma [eqvt]: "p \<bullet> fill c t = fill (p \<bullet> c) (p \<bullet> t)"
  by (nominal_induct c avoiding: t rule: cpsctxt.strong_induct) simp_all

nominal_primrec
  ccomp :: "cpsctxt => cpsctxt => cpsctxt"
where
  "ccomp Hole C  = C"
| "atom x \<sharp> C' \<Longrightarrow> ccomp (CAbs x C) C' = CAbs x (ccomp C C')"
| "ccomp (CArg N C) C' = CArg N (ccomp C C')"
| "ccomp (CFun C N) C'  = CFun (ccomp C C') N"
  unfolding eqvt_def ccomp_graph_def
  apply perm_simp
  apply auto
  apply (rule_tac y="a" and c="b" in cpsctxt.strong_exhaust)
  apply (auto simp add: fresh_star_def)
  apply blast+
  apply (erule Abs_lst1_fcb)
  apply (simp_all add: Abs_fresh_iff)
  apply (erule fresh_eqvt_at)
  apply (simp add: finite_supp)
  apply (simp add: fresh_Pair)
  apply (simp add: eqvt_at_def swap_fresh_fresh)
  done

termination
  by (relation "measure (\<lambda>(x, _). size x)") (auto simp add: cpsctxt.size)

lemma [eqvt]: "p \<bullet> ccomp c c' = ccomp (p \<bullet> c) (p \<bullet> c')"
  by (nominal_induct c avoiding: c' rule: cpsctxt.strong_induct) simp_all

nominal_primrec
    CPSv :: "lt => lt"
and CPS :: "lt => cpsctxt" where
  "CPSv (Var x) = x~"
| "CPS (Var x) = CFun Hole (x~)"
| "atom b \<sharp> M \<Longrightarrow> CPSv (Abs y M) = Abs y (Abs b ((CPS M)<Var b>))"
| "atom b \<sharp> M \<Longrightarrow> CPS (Abs y M) = CFun Hole (Abs y (Abs b ((CPS M)<Var b>)))"
| "CPSv (M $ N) = Abs x (Var x)"
| "isValue M \<Longrightarrow> isValue N \<Longrightarrow> CPS (M $ N) = CArg (CPSv M $ CPSv N) Hole"
| "isValue M \<Longrightarrow> ~isValue N \<Longrightarrow> atom a \<sharp> N \<Longrightarrow> CPS (M $ N) =
     ccomp (CPS N) (CAbs a (CArg (CPSv M $ Var a) Hole))"
| "~isValue M \<Longrightarrow> isValue N \<Longrightarrow> atom a \<sharp> N \<Longrightarrow> CPS (M $ N) =
     ccomp (CPS M) (CAbs a (CArg (Var a $ (CPSv N)) Hole))"
| "~isValue M \<Longrightarrow> ~isValue N \<Longrightarrow> atom a \<sharp> (N, b) \<Longrightarrow> CPS (M $ N) =
     ccomp (CPS M) (CAbs a (ccomp (CPS N) (CAbs b (CArg (Var a $ Var b) Hole))))"
  apply auto
  oops --"The goals seem reasonable"

end