--- a/Nominal/Nominal2_Base_Exec.thy Thu May 31 12:01:01 2012 +0100
+++ b/Nominal/Nominal2_Base_Exec.thy Thu May 31 12:01:13 2012 +0100
@@ -1015,9 +1015,6 @@
unfolding finite_def
by (perm_simp) (rule refl)
-lemma Let_eqvt [eqvt]:
- "p \<bullet> Let x y = Let (p \<bullet> x) (p \<bullet> y)"
- unfolding Let_def permute_fun_app_eq ..
subsubsection {* Equivariance for product operations *}
@@ -1678,6 +1675,13 @@
unfolding supp_def
by simp
+lemma fresh_fun_eqvt:
+ assumes a: "eqvt f"
+ shows "a \<sharp> f"
+ using a
+ unfolding fresh_def
+ by (simp add: supp_fun_eqvt)
+
lemma fresh_fun_eqvt_app:
assumes a: "eqvt f"
shows "a \<sharp> x \<Longrightarrow> a \<sharp> f x"
@@ -1726,6 +1730,27 @@
using supp_eqvt_at[OF asm fin]
by auto
+text {* for handling of freshness of functions *}
+
+simproc_setup fresh_fun_simproc ("a \<sharp> (f::'a::pt \<Rightarrow>'b::pt)") = {* fn _ => fn ss => fn ctrm =>
+ let
+ val Const(@{const_name fresh}, _) $ _ $ f = term_of ctrm
+ in
+ case (Term.add_frees f [], Term.add_vars f []) of
+ ([], []) => SOME(@{thm fresh_fun_eqvt[simplified eqvt_def, THEN Eq_TrueI]})
+ | (x::_, []) => let
+ val thy = Proof_Context.theory_of (Simplifier.the_context ss)
+ val argx = Free x
+ val absf = absfree x f
+ val cty_inst = [SOME (ctyp_of thy (fastype_of argx)), SOME (ctyp_of thy (fastype_of f))]
+ val ctrm_inst = [NONE, SOME (cterm_of thy absf), SOME (cterm_of thy argx)]
+ val thm = Drule.instantiate' cty_inst ctrm_inst @{thm fresh_fun_app}
+ in
+ SOME(thm RS @{thm Eq_TrueI})
+ end
+ | (_, _) => NONE
+ end
+*}
subsection {* helper functions for nominal_functions *}
@@ -3080,16 +3105,16 @@
text {* packaging the freshness lemma into a function *}
definition
- fresh_fun :: "('a::at \<Rightarrow> 'b::pt) \<Rightarrow> 'b"
+ Fresh :: "('a::at \<Rightarrow> 'b::pt) \<Rightarrow> 'b"
where
- "fresh_fun h = (THE x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x)"
-
-lemma fresh_fun_apply:
+ "Fresh h = (THE x. \<forall>a. atom a \<sharp> h \<longrightarrow> h a = x)"
+
+lemma Fresh_apply:
fixes h :: "'a::at \<Rightarrow> 'b::pt"
assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
assumes b: "atom a \<sharp> h"
- shows "fresh_fun h = h a"
-unfolding fresh_fun_def
+ shows "Fresh h = h a"
+unfolding Fresh_def
proof (rule the_equality)
show "\<forall>a'. atom a' \<sharp> h \<longrightarrow> h a' = h a"
proof (intro strip)
@@ -3104,36 +3129,36 @@
with b show "fr = h a" by auto
qed
-lemma fresh_fun_apply':
+lemma Fresh_apply':
fixes h :: "'a::at \<Rightarrow> 'b::pt"
assumes a: "atom a \<sharp> h" "atom a \<sharp> h a"
- shows "fresh_fun h = h a"
- apply (rule fresh_fun_apply)
+ shows "Fresh h = h a"
+ apply (rule Fresh_apply)
apply (auto simp add: fresh_Pair intro: a)
done
-lemma fresh_fun_eqvt:
+lemma Fresh_eqvt:
fixes h :: "'a::at \<Rightarrow> 'b::pt"
assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
- shows "p \<bullet> (fresh_fun h) = fresh_fun (p \<bullet> h)"
+ shows "p \<bullet> (Fresh h) = Fresh (p \<bullet> h)"
using a
apply (clarsimp simp add: fresh_Pair)
- apply (subst fresh_fun_apply', assumption+)
+ apply (subst Fresh_apply', assumption+)
apply (drule fresh_permute_iff [where p=p, THEN iffD2])
apply (drule fresh_permute_iff [where p=p, THEN iffD2])
apply (simp only: atom_eqvt permute_fun_app_eq [where f=h])
- apply (erule (1) fresh_fun_apply' [symmetric])
+ apply (erule (1) Fresh_apply' [symmetric])
done
-lemma fresh_fun_supports:
+lemma Fresh_supports:
fixes h :: "'a::at \<Rightarrow> 'b::pt"
assumes a: "\<exists>a. atom a \<sharp> (h, h a)"
- shows "(supp h) supports (fresh_fun h)"
+ shows "(supp h) supports (Fresh h)"
apply (simp add: supports_def fresh_def [symmetric])
- apply (simp add: fresh_fun_eqvt [OF a] swap_fresh_fresh)
+ apply (simp add: Fresh_eqvt [OF a] swap_fresh_fresh)
done
-notation fresh_fun (binder "FRESH " 10)
+notation Fresh (binder "FRESH " 10)
lemma FRESH_f_iff:
fixes P :: "'a::at \<Rightarrow> 'b::pure"
@@ -3143,12 +3168,12 @@
proof -
obtain a::'a where "atom a \<sharp> P" using P by (rule obtain_fresh')
show "(FRESH x. f (P x)) = f (FRESH x. P x)"
- apply (subst fresh_fun_apply' [where a=a, OF _ pure_fresh])
+ apply (subst Fresh_apply' [where a=a, OF _ pure_fresh])
apply (cut_tac `atom a \<sharp> P`)
apply (simp add: fresh_conv_MOST)
apply (elim MOST_rev_mp, rule MOST_I, clarify)
apply (simp add: permute_fun_def permute_pure fun_eq_iff)
- apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> P` pure_fresh])
+ apply (subst Fresh_apply' [where a=a, OF `atom a \<sharp> P` pure_fresh])
apply (rule refl)
done
qed
@@ -3165,13 +3190,13 @@
then obtain a::'a where "atom a \<sharp> (P, Q)" by (rule obtain_fresh')
then have "atom a \<sharp> P" and "atom a \<sharp> Q" by (simp_all add: fresh_Pair)
show ?thesis
- apply (subst fresh_fun_apply' [where a=a, OF _ pure_fresh])
+ apply (subst Fresh_apply' [where a=a, OF _ pure_fresh])
apply (cut_tac `atom a \<sharp> P` `atom a \<sharp> Q`)
apply (simp add: fresh_conv_MOST)
apply (elim MOST_rev_mp, rule MOST_I, clarify)
apply (simp add: permute_fun_def permute_pure fun_eq_iff)
- apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> P` pure_fresh])
- apply (subst fresh_fun_apply' [where a=a, OF `atom a \<sharp> Q` pure_fresh])
+ apply (subst Fresh_apply' [where a=a, OF `atom a \<sharp> P` pure_fresh])
+ apply (subst Fresh_apply' [where a=a, OF `atom a \<sharp> Q` pure_fresh])
apply (rule refl)
done
qed