--- a/Nominal/Ex/Lambda.thy Tue Apr 13 00:53:48 2010 +0200
+++ b/Nominal/Ex/Lambda.thy Tue Apr 13 07:40:54 2010 +0200
@@ -260,15 +260,6 @@
using a
apply(induct)
apply(tactic {* my_tac @{context} @{thms alpha_lam_raw.intros} 1 *})
-apply(tactic {* my_tac @{context} @{thms alpha_lam_raw.intros} 1 *})
-apply(perm_strict_simp)
-apply(rule alpha_lam_raw.intros)
-apply(simp)
-apply(perm_strict_simp)
-apply(rule alpha_lam_raw.intros)
-apply(simp add: alphas)
-apply(rule_tac p="- p" in permute_boolE)
-apply(perm_simp permute_minus_cancel(2))
oops
thm alpha_lam_raw.intros[no_vars]
--- a/Nominal/Nominal2_FSet.thy Tue Apr 13 00:53:48 2010 +0200
+++ b/Nominal/Nominal2_FSet.thy Tue Apr 13 07:40:54 2010 +0200
@@ -40,14 +40,15 @@
by (lifting permute_list.simps)
lemma fmap_eqvt[eqvt]:
- shows "pi \<bullet> (fmap f l) = fmap (pi \<bullet> f) (pi \<bullet> l)"
+ shows "p \<bullet> (fmap f l) = fmap (p \<bullet> f) (p \<bullet> l)"
by (lifting map_eqvt)
-lemma fset_to_set_eqvt[eqvt]: "pi \<bullet> (fset_to_set x) = fset_to_set (pi \<bullet> x)"
+lemma fset_to_set_eqvt[eqvt]:
+ shows "p \<bullet> (fset_to_set x) = fset_to_set (p \<bullet> x)"
by (lifting set_eqvt)
lemma fin_fset_to_set:
- "finite (fset_to_set x)"
+ shows "finite (fset_to_set x)"
by (induct x) (simp_all)
lemma supp_fset_to_set:
@@ -64,9 +65,10 @@
done
lemma supp_fmap_atom:
- "supp (fmap atom x) = supp x"
- apply (simp add: supp_def)
- apply (simp add: eqvts eqvts_raw atom_fmap_cong)
+ shows "supp (fmap atom x) = supp x"
+ unfolding supp_def
+ apply (perm_simp)
+ apply (simp add: atom_fmap_cong)
done
lemma supp_atom_insert:
@@ -84,7 +86,9 @@
lemma atom_eqvt_raw:
fixes p::"perm"
shows "(p \<bullet> atom) = atom"
- by (simp add: expand_fun_eq permute_fun_def atom_eqvt)
+ apply(perm_simp)
+ apply(simp)
+ done
lemma supp_finite_at_set:
fixes S::"('a :: at) set"