# HG changeset patch # User Christian Urban # Date 1271137254 -7200 # Node ID 37480540c1af1d234a17ae487d55a5ff77c422b9 # Parent f20096761790278cbdf56222061d8692509ef552 made everything to compile diff -r f20096761790 -r 37480540c1af Nominal/Ex/Lambda.thy --- a/Nominal/Ex/Lambda.thy Tue Apr 13 00:53:48 2010 +0200 +++ b/Nominal/Ex/Lambda.thy Tue Apr 13 07:40:54 2010 +0200 @@ -260,15 +260,6 @@ using a apply(induct) apply(tactic {* my_tac @{context} @{thms alpha_lam_raw.intros} 1 *}) -apply(tactic {* my_tac @{context} @{thms alpha_lam_raw.intros} 1 *}) -apply(perm_strict_simp) -apply(rule alpha_lam_raw.intros) -apply(simp) -apply(perm_strict_simp) -apply(rule alpha_lam_raw.intros) -apply(simp add: alphas) -apply(rule_tac p="- p" in permute_boolE) -apply(perm_simp permute_minus_cancel(2)) oops thm alpha_lam_raw.intros[no_vars] diff -r f20096761790 -r 37480540c1af Nominal/Nominal2_FSet.thy --- a/Nominal/Nominal2_FSet.thy Tue Apr 13 00:53:48 2010 +0200 +++ b/Nominal/Nominal2_FSet.thy Tue Apr 13 07:40:54 2010 +0200 @@ -40,14 +40,15 @@ by (lifting permute_list.simps) lemma fmap_eqvt[eqvt]: - shows "pi \ (fmap f l) = fmap (pi \ f) (pi \ l)" + shows "p \ (fmap f l) = fmap (p \ f) (p \ l)" by (lifting map_eqvt) -lemma fset_to_set_eqvt[eqvt]: "pi \ (fset_to_set x) = fset_to_set (pi \ x)" +lemma fset_to_set_eqvt[eqvt]: + shows "p \ (fset_to_set x) = fset_to_set (p \ x)" by (lifting set_eqvt) lemma fin_fset_to_set: - "finite (fset_to_set x)" + shows "finite (fset_to_set x)" by (induct x) (simp_all) lemma supp_fset_to_set: @@ -64,9 +65,10 @@ done lemma supp_fmap_atom: - "supp (fmap atom x) = supp x" - apply (simp add: supp_def) - apply (simp add: eqvts eqvts_raw atom_fmap_cong) + shows "supp (fmap atom x) = supp x" + unfolding supp_def + apply (perm_simp) + apply (simp add: atom_fmap_cong) done lemma supp_atom_insert: @@ -84,7 +86,9 @@ lemma atom_eqvt_raw: fixes p::"perm" shows "(p \ atom) = atom" - by (simp add: expand_fun_eq permute_fun_def atom_eqvt) + apply(perm_simp) + apply(simp) + done lemma supp_finite_at_set: fixes S::"('a :: at) set"