--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Ex/LamFun.thy Wed Sep 29 07:39:06 2010 -0400
@@ -0,0 +1,180 @@
+theory Lambda
+imports "../Nominal2" Quotient_Option
+begin
+
+atom_decl name
+declare [[STEPS = 100]]
+
+nominal_datatype lam =
+ Var "name"
+| App "lam" "lam"
+| Lam x::"name" l::"lam" bind x in l
+
+thm lam.distinct
+thm lam.induct
+thm lam.exhaust
+thm lam.fv_defs
+thm lam.bn_defs
+thm lam.perm_simps
+thm lam.eq_iff
+thm lam.fv_bn_eqvt
+thm lam.size_eqvt
+thm lam.size
+thm lam_raw.size
+thm lam.fresh
+
+primrec match_Var_raw where
+ "match_Var_raw (Var_raw x) = Some x"
+| "match_Var_raw (App_raw x y) = None"
+| "match_Var_raw (Lam_raw n t) = None"
+
+quotient_definition
+ "match_Var :: lam \<Rightarrow> name option"
+is match_Var_raw
+
+lemma [quot_respect]: "(alpha_lam_raw ===> op =) match_Var_raw match_Var_raw"
+ by (rule, induct_tac a b rule: alpha_lam_raw.induct, simp_all)
+
+lemmas match_Var_simps = match_Var_raw.simps[quot_lifted]
+
+primrec match_App_raw where
+ "match_App_raw (Var_raw x) = None"
+| "match_App_raw (App_raw x y) = Some (x, y)"
+| "match_App_raw (Lam_raw n t) = None"
+
+quotient_definition
+ "match_App :: lam \<Rightarrow> (lam \<times> lam) option"
+is match_App_raw
+
+lemma [quot_respect]:
+ "(alpha_lam_raw ===> option_rel (prod_rel alpha_lam_raw alpha_lam_raw)) match_App_raw match_App_raw"
+ by (intro fun_relI, induct_tac a b rule: alpha_lam_raw.induct, simp_all)
+
+lemmas match_App_simps = match_App_raw.simps[quot_lifted]
+
+definition next_name where
+ "next_name (s :: 'a :: fs) = (THE x. \<forall>a \<in> supp s. atom x \<noteq> a)"
+
+lemma lam_eq: "Lam a t = Lam b s \<longleftrightarrow> (a \<leftrightarrow> b) \<bullet> t = s"
+ apply (simp add: lam.eq_iff Abs_eq_iff alphas)
+ sorry
+
+lemma lam_half_inj: "(Lam z s = Lam z sa) = (s = sa)"
+ by (auto simp add: lam_eq)
+
+definition
+ "match_Lam (S :: 'a :: fs) t = (if (\<exists>n s. (t = Lam n s)) then
+ (let z = next_name (S, t) in Some (z, THE s. t = Lam z s)) else None)"
+
+lemma match_Lam_simps:
+ "match_Lam S (Var n) = None"
+ "match_Lam S (App l r) = None"
+ "match_Lam S (Lam z s) = (let n = next_name (S, (Lam z s)) in Some (n, (z \<leftrightarrow> n) \<bullet> s))"
+ apply (simp_all add: match_Lam_def lam.distinct)
+ apply (auto simp add: lam_eq)
+ done
+
+lemma app_some: "match_App x = Some (a, b) \<Longrightarrow> x = App a b"
+by (induct x rule: lam.induct) (simp_all add: match_App_simps)
+
+
+lemma lam_some: "match_Lam S x = Some (n, t) \<Longrightarrow> x = Lam n t"
+ apply (induct x rule: lam.induct)
+ apply (simp add: match_Lam_simps)
+ apply (simp add: match_Lam_simps)
+ apply (simp add: match_Lam_simps Let_def lam_eq)
+ apply clarify
+ done
+
+function subst where
+"subst v s t = (
+ case match_Var t of Some n \<Rightarrow> if n = v then s else Var n | None \<Rightarrow>
+ case match_App t of Some (l, r) \<Rightarrow> App (subst v s l) (subst v s r) | None \<Rightarrow>
+ case match_Lam (v, s) t of Some (n, s') \<Rightarrow> Lam n (subst v s s') | None \<Rightarrow> undefined)"
+print_theorems
+thm subst_rel.intros[no_vars]
+by pat_completeness auto
+
+termination apply (relation "measure (\<lambda>(_, _, t). size t)")
+ apply auto[1]
+ apply (case_tac a) apply simp
+ apply (frule lam_some) apply (simp add: lam.size)
+ apply (case_tac a) apply simp
+ apply (frule app_some) apply (simp add: lam.size)
+ apply (case_tac a) apply simp
+ apply (frule app_some) apply (simp add: lam.size)
+done
+
+lemma subst_eqs:
+ "subst y s (Var x) = (if x = y then s else (Var x))"
+ "subst y s (App l r) = App (subst y s l) (subst y s r)"
+ "subst y s (Lam x t) =
+ (let n = next_name ((y, s), Lam x t) in Lam n (subst y s ((x \<leftrightarrow> n) \<bullet> t)))"
+ apply (subst subst.simps)
+ apply (simp only: match_Var_simps option.simps)
+ apply (subst subst.simps)
+ apply (simp only: match_App_simps option.simps prod.simps match_Var_simps)
+ apply (subst subst.simps)
+ apply (simp only: match_App_simps option.simps prod.simps match_Var_simps match_Lam_simps Let_def)
+ done
+
+lemma subst_eqvt:
+ "p \<bullet> (subst v s t) = subst (p \<bullet> v) (p \<bullet> s) (p \<bullet> t)"
+ proof (induct v s t rule: subst.induct)
+ case (1 v s t)
+ show ?case proof (cases t rule: lam.exhaust)
+ fix n
+ assume "t = Var n"
+ then show ?thesis by (simp add: match_Var_simps)
+ next
+ fix l r
+ assume "t = App l r"
+ then show ?thesis
+ apply (simp only: subst_eqs lam.perm_simps)
+ apply (subst 1(2)[of "(l, r)" "l" "r"])
+ apply (simp add: match_Var_simps)
+ apply (simp add: match_App_simps)
+ apply (rule refl)
+ apply (subst 1(3)[of "(l, r)" "l" "r"])
+ apply (simp add: match_Var_simps)
+ apply (simp add: match_App_simps)
+ apply (rule refl)
+ apply (rule refl)
+ done
+ next
+ fix n t'
+ assume "t = Lam n t'"
+ then show ?thesis
+ apply (simp only: subst_eqs lam.perm_simps Let_def)
+ apply (subst 1(1))
+ apply (simp add: match_Var_simps)
+ apply (simp add: match_App_simps)
+ apply (simp add: match_Lam_simps Let_def)
+ apply (rule refl)
+ (* next_name is not equivariant :( *)
+ apply (simp only: lam_eq)
+ sorry
+ qed
+ qed
+
+lemma subst_eqvt':
+ "p \<bullet> (subst v s t) = subst (p \<bullet> v) (p \<bullet> s) (p \<bullet> t)"
+ apply (induct t arbitrary: v s rule: lam.induct)
+ apply (simp only: subst_eqs lam.perm_simps eqvts)
+ apply (simp only: subst_eqs lam.perm_simps)
+ apply (simp only: subst_eqs lam.perm_simps Let_def)
+ apply (simp only: lam_eq)
+ sorry
+
+lemma subst_eq3:
+ "atom x \<sharp> (y, s) \<Longrightarrow> subst y s (Lam x t) = Lam x (subst y s t)"
+ apply (simp only: subst_eqs Let_def)
+ apply (simp only: lam_eq)
+ (* p # y p # s subst_eqvt *)
+ (* p \<bullet> -p \<bullet> (subst y s t) = subst y s t *)
+ sorry
+
+end
+
+
+