--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Quot/QuotOption.thy Thu Dec 10 18:28:41 2009 +0100
@@ -0,0 +1,82 @@
+theory QuotOption
+imports QuotMain
+begin
+
+fun
+ option_rel
+where
+ "option_rel R None None = True"
+| "option_rel R (Some x) None = False"
+| "option_rel R None (Some x) = False"
+| "option_rel R (Some x) (Some y) = R x y"
+
+fun
+ option_map
+where
+ "option_map f None = None"
+| "option_map f (Some x) = Some (f x)"
+
+declare [[map * = (option_map, option_rel)]]
+
+lemma option_quotient[quot_thm]:
+ assumes q: "Quotient R Abs Rep"
+ shows "Quotient (option_rel R) (option_map Abs) (option_map Rep)"
+ apply (unfold Quotient_def)
+ apply (rule conjI)
+ apply (rule allI)
+ apply (case_tac a)
+ apply (simp_all add: Quotient_abs_rep[OF q])
+ apply (rule conjI)
+ apply (rule allI)
+ apply (case_tac a)
+ apply (simp_all add: Quotient_rel_rep[OF q])
+ apply (rule allI)+
+ apply (case_tac r)
+ apply (case_tac s)
+ apply (simp_all add: Quotient_abs_rep[OF q] add: Quotient_rel_rep[OF q])
+ apply (case_tac s)
+ apply (simp_all add: Quotient_abs_rep[OF q] add: Quotient_rel_rep[OF q])
+ using q
+ unfolding Quotient_def
+ apply metis
+done
+
+lemma option_rel_some:
+ assumes e: "equivp R"
+ and a: "option_rel R (Some a) = option_rel R (Some aa)"
+ shows "R a aa"
+using a apply(drule_tac x="Some aa" in fun_cong)
+apply(simp add: equivp_reflp[OF e])
+done
+
+lemma option_equivp[quot_equiv]:
+ assumes a: "equivp R"
+ shows "equivp (option_rel R)"
+ unfolding equivp_def
+ apply(rule allI)+
+ apply(case_tac x)
+ apply(case_tac y)
+ apply(simp_all)
+ apply(unfold not_def)
+ apply(rule impI)
+ apply(drule_tac x="None" in fun_cong)
+ apply simp
+ apply(case_tac y)
+ apply(simp_all)
+ apply(unfold not_def)
+ apply(rule impI)
+ apply(drule_tac x="None" in fun_cong)
+ apply simp
+ apply(rule iffI)
+ apply(rule ext)
+ apply(case_tac xa)
+ apply(auto)
+ apply(rule equivp_transp[OF a])
+ apply(rule equivp_symp[OF a])
+ apply(assumption)+
+ apply(rule equivp_transp[OF a])
+ apply(assumption)+
+ apply(simp only: option_rel_some[OF a])
+ done
+
+end
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Quot/QuotSum.thy Thu Dec 10 18:28:41 2009 +0100
@@ -0,0 +1,84 @@
+theory QuotSum
+imports QuotMain
+begin
+
+fun
+ sum_rel
+where
+ "sum_rel R1 R2 (Inl a1) (Inl b1) = R1 a1 b1"
+| "sum_rel R1 R2 (Inl a1) (Inr b2) = False"
+| "sum_rel R1 R2 (Inr a2) (Inl b1) = False"
+| "sum_rel R1 R2 (Inr a2) (Inr b2) = R2 a2 b2"
+
+fun
+ sum_map
+where
+ "sum_map f1 f2 (Inl a) = Inl (f1 a)"
+| "sum_map f1 f2 (Inr a) = Inr (f2 a)"
+
+declare [[map * = (sum_map, sum_rel)]]
+
+lemma sum_equivp[quot_equiv]:
+ assumes a: "equivp R1"
+ assumes b: "equivp R2"
+ shows "equivp (sum_rel R1 R2)"
+unfolding equivp_reflp_symp_transp reflp_def symp_def transp_def
+apply(auto)
+apply(case_tac x)
+apply(auto simp add: equivp_reflp[OF a] equivp_reflp[OF b])
+apply(case_tac x)
+apply(case_tac y)
+prefer 3
+apply(case_tac y)
+apply(auto simp add: equivp_symp[OF a] equivp_symp[OF b])
+apply(case_tac x)
+apply(case_tac y)
+apply(case_tac z)
+prefer 3
+apply(case_tac z)
+prefer 5
+apply(case_tac y)
+apply(case_tac z)
+prefer 3
+apply(case_tac z)
+apply(auto)
+apply(metis equivp_transp[OF b])
+apply(metis equivp_transp[OF a])
+done
+
+lemma sum_fun_fun:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "sum_rel R1 R2 r s =
+ (sum_rel R1 R2 r r \<and> sum_rel R1 R2 s s \<and> sum_map Abs1 Abs2 r = sum_map Abs1 Abs2 s)"
+ using q1 q2
+ apply(case_tac r)
+ apply(case_tac s)
+ apply(simp_all)
+ prefer 2
+ apply(case_tac s)
+ apply(auto)
+ unfolding Quotient_def
+ apply metis+
+ done
+
+lemma sum_quotient[quot_thm]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "Quotient (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)"
+ unfolding Quotient_def
+ apply(rule conjI)
+ apply(rule allI)
+ apply(case_tac a)
+ apply(simp add: Quotient_abs_rep[OF q1])
+ apply(simp add: Quotient_abs_rep[OF q2])
+ apply(rule conjI)
+ apply(rule allI)
+ apply(case_tac a)
+ apply(simp add: Quotient_rel_rep[OF q1])
+ apply(simp add: Quotient_rel_rep[OF q2])
+ apply(rule allI)+
+ apply(rule sum_fun_fun[OF q1 q2])
+ done
+
+end
\ No newline at end of file
--- a/Quot/Quotients.thy Thu Dec 10 18:28:30 2009 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,76 +0,0 @@
-theory Quotients
-imports Main
-begin
-
-(* Other quotients that have not been proved yet *)
-
-fun
- option_rel
-where
- "option_rel R None None = True"
-| "option_rel R (Some x) None = False"
-| "option_rel R None (Some x) = False"
-| "option_rel R (Some x) (Some y) = R x y"
-
-fun
- option_map
-where
- "option_map f None = None"
-| "option_map f (Some x) = Some (f x)"
-
-fun
- prod_rel
-where
- "prod_rel R1 R2 (a1,a2) (b1,b2) = (R1 a1 b1 \<and> R2 a2 b2)"
-
-fun
- prod_map
-where
- "prod_map f1 f2 (a,b) = (f1 a, f2 b)"
-
-fun
- sum_rel
-where
- "sum_rel R1 R2 (Inl a1) (Inl b1) = R1 a1 b1"
-| "sum_rel R1 R2 (Inl a1) (Inr b2) = False"
-| "sum_rel R1 R2 (Inr a2) (Inl b1) = False"
-| "sum_rel R1 R2 (Inr a2) (Inr b2) = R2 a2 b2"
-
-fun
- sum_map
-where
- "sum_map f1 f2 (Inl a) = Inl (f1 a)"
-| "sum_map f1 f2 (Inr a) = Inr (f2 a)"
-
-fun
- noption_map::"('a \<Rightarrow> 'b) \<Rightarrow> ('a noption) \<Rightarrow> ('b noption)"
-where
- "noption_map f (nSome x) = nSome (f x)"
-| "noption_map f nNone = nNone"
-
-fun
- noption_rel
-where
- "noption_rel r (nSome x) (nSome y) = r x y"
-| "noption_rel r _ _ = False"
-
-declare [[map noption = (noption_map, noption_rel)]]
-
-lemma "noption_map id = id"
-sorry
-
-lemma noption_Quotient:
- assumes q: "Quotient R Abs Rep"
- shows "Quotient (noption_rel R) (noption_map Abs) (noption_map Rep)"
- apply (unfold Quotient_def)
- apply (auto)
- using q
- apply (unfold Quotient_def)
- apply (case_tac "a :: 'b noption")
- apply (simp)
- apply (simp)
- apply (case_tac "a :: 'b noption")
- apply (simp only: option_map.simps)
- apply (subst option_rel.simps)
- (* Simp starts hanging so don't know how to continue *)
- sorry